Skip to main content

Commensal Gastrointestinal Microbiota as a Complex Interactive Consortia

  • Chapter
  • First Online:
Direct-Fed Microbials and Prebiotics for Animals

Abstract

The commensal microbial population of the gastrointestinal tract is crucial to host health and wellbeing, not only because the microbes degrade feedstuffs but also because they provide resistance against pathogen colonization, and these commensal microbes are involved in developmental programming and immune system development. The microbial population has been described as a functional organ system in the host, and this population outnumbers host cells by a factor of more than ten to one. The presence of a large number of microbial genes that are not found in the host genome means that the native microbial population is an accessory genome to the host animal, providing the ability to degrade feedstuffs and produce the essential nutrients (e.g., vitamins and cofactors) needed by other members of the microbial ecosystem and the host animal. More and more information has shed light on the involvement of the microbial population in immune development, gut health, host physiological status, and even mental health. The dynamic microbial population changes during aging, dietary shifts, and exposure to environmental stressors, and the ability of this population to attenuate these profound shifts increases the adaptability of the host animal and can affect feed efficiency and sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Hack ME, El-Saadony MT, Saad AM, Salem HM, Ashry NM, Abo Ghanima MM, Shukry M, Swelum AA, Taha AE, El-Tahan AM, AbuQamar SF, El-Tarabily KA (2022) Essential oils and their nanoemulsions as green alternatives to antibiotics in poultry nutrition: a comprehensive review. Poult Sci 101:101584. https://doi.org/10.1016/j.psj.2021.101584

    Article  CAS  PubMed  Google Scholar 

  • Abt MC, Pamer EG (2014) Commensel bacteria mediated defenses against pathogens. Curr Opin Immunol 29:16–22. https://doi.org/10.1016/j.coi.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  • Adlerberth I, Wold AE (2009) Establishment of the gut microbiota in western infants. Acta Paediatr 99:229–238

    Article  Google Scholar 

  • Alverdy JC, Luo JN (2017) The influence of host stress on the mechanism of infection: lost microbiomes, emergent pathobiomes, and the role of interkingdom signaling. Front Microbiol 8:322. https://doi.org/10.3389/fmicb.2017.00322

    Article  PubMed  PubMed Central  Google Scholar 

  • Amarasekare P, Hoopes MF, Mouquet N, Holyoak M (2004) Mechanisms of coexistence in competitive metacommunities. Am Nat 164:310–326

    Article  PubMed  Google Scholar 

  • Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tab J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Quin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoentendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Dore J, Antolin M, Artiguenave F, Blottiere HM, Almedia M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de Guchte M, Guedon E, Haimet F, Huber W, van Hylckama-Vleig J, Jamet A, Juste C, Kaci G, Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, Meriwux A, Minardi RM, M’Rini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J, Erlich SD, Bork P (2011) Entrotypes of the human gut microbiome. Nature 473:174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asanuma N, Hino T (2000) Effects of pH and energy supply on activity and amount of pyruvate formate-lyase in Streptococcus bovis. Appl Environ Microbiol 66:3773–3777. https://doi.org/10.1128/AEM.66.9.3773-3777.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asanuma N, Hino T (2002) Regulation of fermentation in ruminal bacterium, Streptococcus bovis, with special reference to rumen acidosis. Anim Sci J 73:313–325. https://doi.org/10.1046/j.1344-3941.2002.00044.x

    Article  Google Scholar 

  • Badr G, Mohany M (2011) Maternal perinatal undernutrition attenuates T-cell function in adult male rat offspring. Cell Physiol Biochem 27(3–4):381–390

    Article  CAS  PubMed  Google Scholar 

  • Bailey MT, Dowd SE, Parry NMA, Galley JD, Schauer DB, Lyet M (2010) Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium. Infect Immun 78:1509–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M (2011) Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun 25:397–407

    Article  CAS  PubMed  Google Scholar 

  • Baldwin S, Hughes RJ, Hao Van TT, Moore RJ, Stanley D (2018) At-hatch administration of probiotic to chickens can introduce beneficial changes in gut microbiota. PLoS One 13(3):e0194825. https://doi.org/10.1371/journal.pone.0194825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bäumler AJ, Sperandio V (2016) Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535(7610):85–93. https://doi.org/10.1038/nature18849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezirtzoglou E, Stavropoulou E (2011) Immunology and probiotic impact of the newborn and young children intestinal microflora. Anaerobe 17(6):369–374. https://doi.org/10.1016/j.anarobe.2011.03.010

    Article  PubMed  Google Scholar 

  • Bjorksten B, Sepp E, Julge K, Voor T, Kikelsaar M (2001) Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol 108:516–620

    Google Scholar 

  • Brede M, Orton T, Pinior B, Roch F-F, Dzieciol M, Zwirzitz B, Wagner M, Breves G, Wetzels SU (2020) PacBio and Illumina MiSeq amplicon sequencing confirm full recovery of the bacterial community after subacute ruminal acidosis challenge in the RUSITEC system. Front Microbiol 11:1813. https://doi.org/10.3389/fmicb.2020.01813

    Article  PubMed  PubMed Central  Google Scholar 

  • Buffie CG, Pamer EG (2014) Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 13:790–801. https://doi.org/10.1038/nri3535

    Article  CAS  Google Scholar 

  • Byrd JA, Hargis BM, Caldwell DJ, Bailey RH, Herron KL, McReynolds JL, Brewer RL, Anderson RC, Bischoff KM, Callaway TR, Kubena LF (2001) Effect of lactic acid administration in the drinking water during preslaughter feed withdrawal on Salmonella and Campylobacter contamination of broilers. Poult Sci 80:278–283

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Weimer PJ (2001) Competition among three predominant ruminal cellulolytic bacteria in the absence or presence of non-cellulolytic bacteria. Microbiology 147:21–30

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Shen Y, Wang C, Ding L, Zhao F, Wang M, Fu J, Wang H (2019) Megasphaera elsdenii lactate degradation pattern shifts in rumen acidosis models. Front Microbiol 10:162. https://doi.org/10.3389/fmicb.2019.00162

    Article  PubMed  PubMed Central  Google Scholar 

  • Chou S, Zhang S, Guo H, Chang Y-F, Zhao W, Mou X (2022) Targeted antimicrobial agents as potential tools for modulating the gut microbiome. Front Microbiol 13:879207. https://doi.org/10.3389/fmicb.2022.879207

    Article  PubMed  PubMed Central  Google Scholar 

  • Claesson MJ, Cusack S, O’sullivan O, Green-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falushy D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O’Conner M, Harnedy N, O’Conner K, Henry C, O’Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O’Toole PW (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. PNAS 108:4586–4591

    Article  CAS  PubMed  Google Scholar 

  • Corrier DE, Byrd JA, Hargis BM, Hume ME, Bailey RH, Stanker LH (1999) Presence of Salmonella in the crop and ceca of broiler chickens before and after preslaughter feed withdrawal. Poult Sci 78:45–49

    Article  CAS  PubMed  Google Scholar 

  • Dittoe DK, Ricke SC, Kiess AS (2018) Organic acids and potential for modifying the avian gastrointestinal tract and reducing pathogens and disease. Front Vet Sci 5:216. https://doi.org/10.3389/fvets.2018.00216

    Article  PubMed  PubMed Central  Google Scholar 

  • Dominguez-Bello MG, Blaser MJ, Ley RE, Knight R (2011) Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology 140:1713–1719

    Article  CAS  PubMed  Google Scholar 

  • Drolesky RE, Corrier DE, Nisbet DJ, DeLoach JR (1995) Colonization of cecal mucosal epithelium in chicks treated with a continuous flow culture of 29 characterized bacteria: confirmation by scanning electron microscopy. J Food Prot 58:837·842

    Google Scholar 

  • Dunkley KD, McReynolds JL, Hume ME, Dunkley CS, Callaway TR, Kubena LF, Nisbet DJ, Ricke SC (2007a) Molting in Salmonella Enteritidis challenged laying hens fed alfalfa crumbles I. Salmonella Enteritidis colonization and virulence gene hilA response. Poult Sci 86:1633–1639

    Article  CAS  PubMed  Google Scholar 

  • Dunkley KD, McReynolds JL, Hume ME, Dunkley CS, Callaway TR, Kubena LF, Nisbet DJ, Ricke SC (2007b) Molting in Salmonella Enteritidis challenged laying hens fed alfalfa crumbles II. Fermentation and microbial ecology response. Poult Sci 86:2101–2109

    Article  CAS  PubMed  Google Scholar 

  • Durant JA, Corrier DE, Byrd JA, Stanker LH, Ricke SC (1999) Feed deprivation affects crop environment and modulates Salmonella enteritidis colonization and invasion of Leghorn hens. Appl Environ Microbiol 65:1919–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards-Callaway LN, Calvo-Lorenzo MS (2020) Animal welfare in the U.S. slaughter industry—a focus on fed cattle. J Anim Sci 98:1–21. https://doi.org/10.1093/jas/skaa040

    Article  Google Scholar 

  • Freestone PPE, Sandrini SM, Haigh RD, Lyte M (2008) Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol 16:55–64

    Article  CAS  PubMed  Google Scholar 

  • Gantois I, Ducatelle R, Pasmans F, Haesebrouck F, Gast R, Humphrey TJ, Van Immerseel F (2009) Mechanisms of egg contamination by Salmonella Enteritidis. FEMS Microbiol Rev 33:718–738. https://doi.org/10.1111/j.1574-6976.2008.00161.x

    Article  CAS  PubMed  Google Scholar 

  • Gast RK, Dittoe DK, Ricke SC (2022) Salmonella in eggs and egg-laying chickens: pathways to effective control. Crit Rev Microbiol. https://doi.org/10.1080/1040841X.2022.2156772

  • Gildersleeve RP, Hoyle M, Miles AM, Murray DL, Ricks A, Secrest MN, Williams CJ, Womack CL (1993) Developmental performance of an administration of Marek’s disease egg injection machine for vaccine. J Appl Poult Res 2:337–346

    Article  Google Scholar 

  • Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. PNAS 108:3047–3052

    Article  CAS  PubMed Central  Google Scholar 

  • Hernández J, Benedito JL, Abuelo A, Castillo C (2014) Ruminal acidosis in feedlot: from aetiology to prevention. Sci World J 2014:702572. https://doi.org/10.1155/2014/702572

    Article  Google Scholar 

  • Herrera P, Kwon YM, Maciorowski KG, Ricke SC (2009) Ecology and pathogenicity of gastrointestinal Streptococcus bovis. Anaerobe 15:44–54. https://doi.org/10.1016/j.anaerobe.2008.11.003

    Article  PubMed  Google Scholar 

  • Hinton A, Buhr RJ, Ingram KD (2000a) Physical, chemical, and microbiological changes in the ceca of broiler chickens subjected to incremental feed withdrawal. Poult Sci 79:483–488

    Article  PubMed  Google Scholar 

  • Hinton A, Buhr RJ, Ingram KD (2000b) Physical, chemical, and microbiological changes in the crop of broiler chickens subjected to incremental feed withdrawal. Poult Sci 79:212–218

    Article  PubMed  Google Scholar 

  • Hooper LV, Xu J, Falk PG, Midtvedt T, Gordon JI (1999) A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. PNAS 96:9833–9838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horner-Devine MC, Carney KM, Bohannan BJM (2004) An ecological perspective on bacterial biodiversity. Proc R Soc Lond B 271:113–122

    Article  Google Scholar 

  • Huang LT (2011) The link between perinatal glucocorticoids exposure and psychiatric disorders. Pediatr Res 69(5 Pt 2):19R–25R

    Article  CAS  PubMed  Google Scholar 

  • Hungate RE, Dougherty RW, Bryant MP, Cello RM (1952) Microbiological and physiological changes associated with acute indigestion in sheep. Cornell Vet 42:423–449

    CAS  PubMed  Google Scholar 

  • Inman CF, Haverson K, Konstantinov SR, Jones PH, Harris C, Smidt H, Miller B, Bailey M, Stokes C (2010) Rearing environment affects development of the immune system in neonates. Clin Exp Immunol 160:431–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvis GN, Kurtovic A, Hay AG, Russell JB (2001) The physiological and genetic diversity of bovine Streptococcus bovis strains. FEMS Microbiol Ecol 35:49–56

    CAS  PubMed  Google Scholar 

  • Jensen BB, Jorgensen H (1994) Effect of dietary fiber on microbial activity and microbial gas production in various regions of the gastrointestinal tract of pigs. Appl Environ Microbiol 60:1897–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jernberg C, Löfmark S, Edlund C, Jansson JK (2010) Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156:3216–3223. https://doi.org/10.1099/mic.0.040618-0

    Article  CAS  PubMed  Google Scholar 

  • Kadam MM, Barekatain MR, Bhanjac SK, Iji PA (2013) Prospects of in ovo feeding and nutrient supplementation for poultry: the science and commercial applications – a review. J Sci Food Agric 93:3654–3661. https://doi.org/10.1002/jsfa.6301

    Article  CAS  PubMed  Google Scholar 

  • Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh S, Knight R, Angenet LT, Lay RE (2011) Succession of microbial consortia in the developing infant gut microbiome. PNAS 108:4578–4585

    Article  CAS  PubMed  Google Scholar 

  • Koltes JE, Col JB, Clemmens R, Dilger RN, Kramer LM, Lunney JK, McCue ME, McKay SD, Mateescu RG, Murdoch BM, Reuter R, Rexroad CE, Rosa GJM, Serão NVL, White SN, Woodward-Greene MJ, Worku M, Zhang H, Reecy JM (2019) A vision for development and utilization of high-throughput phenotyping and big data analytics in livestock. Front Genet 10:1197. https://doi.org/10.3389/fgene.2019.01197

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotarski SF, Waniska RD, Thurn KK (1992) Starch hydrolysis by the ruminal microflora. J Nutr 122:178–190

    Article  CAS  PubMed  Google Scholar 

  • Leach L, Mann GE (2011) Consequences of fetal programming for cardiovascular disease in adulthood. Microcirculation 18(4):253–255

    Article  PubMed  Google Scholar 

  • Ley RE, Pederson DI, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    Article  CAS  PubMed  Google Scholar 

  • Li W, Dowd SE, Scurlock B, Acosta-Martinez V, Lyte M (2009) Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria. Physiol Behav 96:557–567

    Article  CAS  PubMed  Google Scholar 

  • Li F, Wang Z, Dong C, Li F, Wang W, Yuan Z, Mo F, Weng X (2017) Rumen bacteria communities and performances of fattening lambs with a lower or greater subacute ruminal acidosis risk. Front Microbiol 8:2506. https://doi.org/10.3389/fmicb.2017.02506

    Article  PubMed  PubMed Central  Google Scholar 

  • Loor J, Elolimy A, McCann J (2016) Dietary impacts on rumen microbiota in beef and dairy production. Anim Front 6:22–29. https://doi.org/10.2527/af.2016-0030

    Article  Google Scholar 

  • Lu J, Idris U, Harmon B, Hofacre C (2003) Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl Environ Microbiol 69:6816–6824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyte M (2004) Microbial endocrinology and infectious disease in the 21st century. Trends Microbiol 12:14–20

    Article  CAS  PubMed  Google Scholar 

  • Lyte M (2010) The microbial organ in the gut as a driver of homeostasis and disease. Med Hypotheses 74:634–638

    Article  PubMed  Google Scholar 

  • Lyte M, Bailey MT (1997) Neuroendocrine-bacterial interactions in an neurotoxin-induced model of trauma. J Surg Res 70:195–201

    Article  CAS  PubMed  Google Scholar 

  • Lyte M, Vulchanova L, Brown DR (2011) Stress at the intestinal surface: Catecholamines and mucosa-bacteria interactions. Cell Tissue Res 343:23–32

    Article  CAS  PubMed  Google Scholar 

  • Marques TM, Wall R, Ross RP, Fitzgerald GF, Ryan CA, Stanton C (2010) Programming infant gut microbiota: influence of dietary and environmental factors. Curr Opin Biotechnol 21:149–156

    Article  CAS  PubMed  Google Scholar 

  • Matthews C, Crispie F, Lewis E, Reid M, O'Toole PW, Cotter PD (2019) The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes 10(2):115–132. https://doi.org/10.1080/19490976.2018.1505176

    Article  CAS  PubMed  Google Scholar 

  • McCann JC, Luan S, Cardoso FC, Derakhshani H, Khafipour E, Loor JJ (2016) Induction of subacute ruminal acidosis affects the ruminal microbiome and epithelium. Front Microbiol 7:701. https://doi.org/10.3389/fmicb.2016.00701

    Article  PubMed  PubMed Central  Google Scholar 

  • Moran ET Jr, Bilgili SF (1990) Influence of feeding and fasting broilers prior to marketing on cecal access of orally administered Salmonella. J Food Prot 53:205–207

    Article  PubMed  Google Scholar 

  • Nagaraja TG, Titgemeyer EC (2006) Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook. J Dairy Sci 90:E17–E38

    Article  Google Scholar 

  • Nava GM, Bielke LR, Callaway TR, Castañeda MP (2005) Probiotic alternatives to reduce gastrointestinal infections: the poultry experience. Anim Health Res Rev 6:105–118

    Article  CAS  PubMed  Google Scholar 

  • O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693

    Article  PubMed  PubMed Central  Google Scholar 

  • Overbey EG, Ng TT, Catini P, Griggs LM, Stewart P, Tkalcic S, Hawkins RD, Drechsler Y (2021) Transcriptomes of an array of chicken ovary, intestinal, and immune cells and tissues. Front Genet 12:664424. https://doi.org/10.3389/fgene.2021.664424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SY, Kim WK, Birkhold SG, Kubena LF, Nisbet DJ, Ricke SC (2004) Induced moulting issues and alternative dietary strategies for the egg industry in the United States. Worlds Poult Sci J 60:196–209. https://doi.org/10.1079/WPS20031

    Article  Google Scholar 

  • Peebles ED (2018) In ovo applications in poultry: a review. Poult Sci 97:2322–2338. https://doi.org/10.3382/ps/pey081

    Article  CAS  PubMed  Google Scholar 

  • Pender CM, Kim S, Potter TD, Ritzi MM, Young M, Dalloul RA (2017) In ovo supplementation of probiotics and its effects on performance and immune-related gene expression in broiler chicks. Poult Sci 96:1052–1062. https://doi.org/10.3382/ps/pew381

    Article  CAS  PubMed  Google Scholar 

  • Pinnell LJ, Reyes AA, Wolfe CA, Weinroth MD, Metcalf JL, Delmore RJ, Belk KE, Morley PS, Engle TE (2022) Bacteroidetes and Firmicutes drive differing microbial diversity and community composition among micro-environments in the bovine rumen. Front Vet Sci 9:897996. https://doi.org/10.3389/fvets.2022.897996

    Article  PubMed  PubMed Central  Google Scholar 

  • Rawls JF, Mahowald MA, Ley RE, Gordon JI (2006) Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127:423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricke SC (2003) The gastrointestinal tract ecology of Salmonella Enteritidis colonization in molting hens. Poult Sci 82:1003–1007

    Article  CAS  PubMed  Google Scholar 

  • Ricke SC (2017) Insights and challenges of Salmonella infections in laying hens. Curr Opin Food Sci 18:43–49. https://doi.org/10.1016/j.cofs.2017.10.012

    Article  Google Scholar 

  • Ricke SC, Martin SA, Nisbet DJ (1996) Ecology, metabolism, and genetics of ruminal selenomonads. Crit Rev Microbiol 22:27–65

    Article  CAS  PubMed  Google Scholar 

  • Ricke SC, Richardson K, Dittoe DK (2019) Formaldehydes in feeds and interaction with the poultry gastrointestinal tract microbial community. Front Vet Sci 6:188. https://doi.org/10.3389/fvets.2019.00188

    Article  PubMed  PubMed Central  Google Scholar 

  • Ricke SC, Dittoe DK, Richardson KE (2020) Formic acid as an antimicrobial for poultry production: a review. Front Vet Sci 7:563. https://doi.org/10.3389/fvets.2020.00563

    Article  PubMed  PubMed Central  Google Scholar 

  • Ricke SC, Dittoe DK, Olson EG (2022) Microbiome applications for laying hen performance and egg production. Poult Sci 101:101784. https://doi.org/10.1016/j.psj.2022.101784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues DR, Wilson KM, Trombetta M, Briggs WN, Duff AF, Chasser KM, Bottje WG, Bielke L (2020a) A proteomic view of the cross-talk between early intestinal microbiota and poultry immune system. Front Physiol 11:20. https://doi.org/10.3389/fphys.2020.00020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues DR, Winson E, Wilson KM, Briggs WN, Duff AF, Chasser KM, Bielke LR (2020b) Intestinal pioneer colonizers as drivers of ileal microbial composition and diversity of broiler chickens. Front Microbiol 10:2858. https://doi.org/10.3389/fmicb.2019.02858

    Article  PubMed  PubMed Central  Google Scholar 

  • Roto SM, Kwon YM, Ricke SC (2016) Applications of in ovo technique for the optimal development of the gastrointestinal tract and the potential influence on the establishment of its microbiome in poultry. Front Vet Sci 3:63. https://doi.org/10.3389/fvets.2016.00063

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubio LA (2019) Possibilities of early life programming in broiler chickens via intestinal microbiota modulation. Poult Sci 98:695–706. https://doi.org/10.3382/ps/pey416

    Article  CAS  PubMed  Google Scholar 

  • Russell JB (1984) Factors influencing competition and composition of the rumen bacterial flora. In: Gilchrist FMC, Mackie RI (eds) Herbivore nutrition in the subtropics and tropics. The Science Press (PTY) Ltd, Criaghall

    Google Scholar 

  • Russell JB, Hino T (1985) Regulation of lactate production in Streptococcus bovis: a spiraling effect that coontributes to rumen acidosis. J Dairy Sci 68:1712–1721

    Article  CAS  PubMed  Google Scholar 

  • Russell JB, Robinson PH (1984) Compositions and characteristics of strains of Streptococcus bovis. J Dairy Sci 67:1525–1531

    Article  CAS  PubMed  Google Scholar 

  • Sjögren YM, Tomicic S, Lundberg A, Böttcher MF, Björkstén B, Sverremark-Ekström E, Jenmalm MC (2009) Infulence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses. Clin Exp Allergy 39:1842–1851

    Article  PubMed  Google Scholar 

  • Slyter LL (1976) Influence of acidosis on rumen functuon. J Anim Sci 43:910–919

    Article  CAS  PubMed  Google Scholar 

  • Spor A, Koren O, Ley RE (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9:279–290

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Kobayashi T, Songjinda P, Taeyama A, Tsucouchi M, Kiyohara C, Shirakawa T, Sonomoto K, Nakayama J (2009) Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol Med Microbiol 56:80–87

    Article  CAS  PubMed  Google Scholar 

  • Tapiainen T, Ylitalo S, Eerola E, Uhari M (2006) Dynamics of gut colonization and sources of intestinal flora in healthy newborn infants. APMIS 114:812–817

    Article  PubMed  Google Scholar 

  • Tarry-Adkins JL, Ozanne SE (2011) Mechanisms of early life programming: current knowledge and future directions. Am J Clin Nutr 94(suppl):1765S–1771S

    Article  CAS  PubMed  Google Scholar 

  • Tillman D (2004) Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. PNAS 101:10854–10861

    Article  Google Scholar 

  • Tlaskalová-Hogenová H, Å tepánková R, Hudcovic T, Tucková L, Cukrowska B, Lodinová-Žádníková R, Kozáková H, Rossmann P, Bártová J, Sokol D, Funda DP, Borovská D, Reháková Z, Å inkora J, Hofman J, Drastich P, KokeÅ¡ová A (2004) Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett 93:97–108. https://doi.org/10.1016/j.imlet.2004.02.005

    Article  CAS  PubMed  Google Scholar 

  • Uni Z, Ferket PR (2003) Enhancement of development of oviparous species by in ovo feeding. United States patent US 6592878 B2 (2003)

    Google Scholar 

  • Weimer PJ (1998) Manipulating ruminal fermentation: a microbial ecological perspective. J Anim Sci 76:3114–3122

    Article  CAS  PubMed  Google Scholar 

  • Weimer PJ (2015) Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations. Front Microbiol 6:296. https://doi.org/10.3389/fmicb.2015.00296

    Article  PubMed  PubMed Central  Google Scholar 

  • Welch CB, Lourenco JM, Seidel DM, Krause TR, Rothrock MJ, Pringle TD, Callaway TR (2021) The impact of pre-slaughter fasting on the ruminal microbial population of commercial angus steers. Microorganisms 9:2625. https://doi.org/10.3390/microorganisms9122625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells JE, Russell JB (1996) Why do many ruminal bacteria die and lyse so quickly? J Dairy Sci 79:1487–1495

    Article  CAS  PubMed  Google Scholar 

  • Wetzels SU, Mann E, Metzler-Zebeli BU, Pourazad P, Qumar M, Klevenhusen F, Pinior B, Wagner M, Zebeli Q, Schmitz-Esser S (2016) Epimural indicator phylotypes of transiently-induced subacute ruminal acidosis in dairy cattle. Front Microbiol 7:274. https://doi.org/10.3389/fmicb.2016.00274

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkinson MHF (2002) Model intestinal microflora in computer simulation: a simulation and modeling package for host-microflora interactions. IEEE Trans Biomed Eng 49:1077–1085

    Article  PubMed  Google Scholar 

  • Wolin MJ, Miller TL (1982a) Interactions of microbial populations in cellulose fermentation. Fed Proc 42:109–113

    Google Scholar 

  • Wolin MJ, Miller TL (1982b) Interspecies hydrogen transfer: 15 years later. Am Soc Microbiol News 48:561–565

    Google Scholar 

  • Xavier JB, Picioreanu C, van Loosdrecht MC (2005) A framework for multidimensional modelling of activity and structure of multispecies biofilms. Environ Microbiol 8:1085–1103

    Article  Google Scholar 

  • Yin Y, Lei F, Zhu L, Li S, Wu Z, Zhang R, Gao GF, Zhu B, Wang X (2010) Exposure of different baco newborn chicken affects gut microbiota development and ileum gene expression. ISME J 4:367–376

    Article  CAS  PubMed  Google Scholar 

  • Zaneveld JR, McMinds R, Thurber RV (2017) Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol 2:17121. https://doi.org/10.1038/nmicrobiol.2017.121

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven C. Ricke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patterson, J.A., Callaway, T.R., Ricke, S.C. (2023). Commensal Gastrointestinal Microbiota as a Complex Interactive Consortia. In: Callaway, T.R., Ricke, S.C. (eds) Direct-Fed Microbials and Prebiotics for Animals. Springer, Cham. https://doi.org/10.1007/978-3-031-40512-9_1

Download citation

Publish with us

Policies and ethics