Skip to main content

Aerosol Spread in a Generic Train Entrance: Comparison Between Experiment and Numerical Simulation

  • Conference paper
  • First Online:
New Results in Numerical and Experimental Fluid Mechanics XIV (STAB/DGLR Symposium 2022)

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 154))

Included in the following conference series:

Abstract

The global COVID-19 outbreak in 2020 has made understanding pathogen-laden aerosol transport and the associated transmission routes more relevant than ever. To determine how aerosol particles generated by continuous breathing accumulate in confined spaces, the particle concentrations in a small room resembling a train entrance are investigated. The room is ventilated and equipped with two heated manikins, one of which is continuously exhaling aerosol through the mouth for 30 min. For this setup we conducted local particle measurements in the center plane and a RANS simulation including the prediction of the transient particle transport. It is shown that the particle concentration increases logarithmically and attains a nearly steady state. The resulting local particle concentrations normalized to the source concentrations are subsequently compared. We find good agreement with the experiment in the exhalation zone of the breathing manikin and larger differences for the sensor positions beneath the ventilation inlet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elghobashi, S.: On predicting particle-laden turbulent flows. Appl. Sci. Res. 52(4), 309–329 (1994). https://doi.org/10.1007/bf00936835

    Article  Google Scholar 

  2. Gupta, J.K., Lin, C.H., Chen, Q.: Characterizing exhaled airflow from breathing and talking. Indoor Air 20(1), 31–39 (2010). https://doi.org/10.1111/j.1600-0668.2009.00623.x

    Article  Google Scholar 

  3. Gupta, J.K., Lin, C.H., Chen, Q.: Risk assessment of airborne infectious diseases in aircraft cabins. Indoor Air 22(5), 388–395 (2012). https://doi.org/10.1111/j.1600-0668.2012.00773.x

    Article  Google Scholar 

  4. Hanna, S.: Transport and dispersion of tracer simulating COVID-19 aerosols in passenger aircraft. Indoor Air 32(1), e12974 (2021). https://doi.org/10.1111/ina.12974

    Article  Google Scholar 

  5. Konstantinov, M., Schmeling, D., Wagner, C.: Numerical simulation of the aerosol formation and spreading in a train cabin. J. Aerosol Sci. 170, 106139 (2023). https://doi.org/10.1016/j.jaerosci.2023.106139

    Article  Google Scholar 

  6. Konstantinov, M., Wagner, C.: Numerical simulation of the thermal comfort in a train cabin. Int. J. Railw. Technol. 4(3), 69–88 (2015). https://doi.org/10.4203/ijrt.4.3.3

    Article  Google Scholar 

  7. Lee, J.H.W., Chu, V.H.: Turbulent Jets and Plumes: A Lagrangian Approach. Springer, Boston(2013). https://doi.org/10.1007/978-1-4615-0407-8, ISBN: 978-1-4615-0407-8

  8. Mathai, V., Das, A., Bailey, J.A., Breuer, K.: Airflows inside passenger cars and implications for airborne disease transmission. Sci. Adv. 7(1), eabe0166 (2021). https://doi.org/10.1126/sciadv.abe0166

    Article  Google Scholar 

  9. Morawska, L., Johnson, G.R., Ristovski, Z.D., Hargreaves, M., et al.: Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. J. Aerosol Sci. 40(3), 256–269 (2009). https://doi.org/10.1016/j.jaerosci.2008.11.002

    Article  Google Scholar 

  10. Schmeling, D., Kühn, M., Schiepel, D., Dannhauer, A., et al.: Analysis of aerosol spreading in a German Inter City Express (ICE) train carriage. Build. Environ. 222, 109363 (2022). https://doi.org/10.1016/j.buildenv.2022.109363

    Article  Google Scholar 

  11. Shang, Y., Dong, J., Tian, L., He, F., et al.: An improved numerical model for epidemic transmission and infection risks assessment in indoor environment. J. Aerosol Sci. 162, 105943 (2022). https://doi.org/10.1016/j.jaerosci.2021.105943

    Article  Google Scholar 

  12. TSI. Optical-particle-size (OPS)-3330. https://tsi.com/products/particle-sizers/supermicron-capable-particle-sizer-spectrometers/optical-particle-sizer-(ops)-3330/

  13. Niehaus, K., Westhoff, A.: An Open-Source Data Acquisition System for Laboratory and Industrial Scale Applications. Meas. Sci. Technol. 24(2) (2022). https://doi.org/10.1088/1361-6501/ac9994

  14. Wan, M.P., To, G.N.S., Chao, C.Y.H., Fang, L., et al.: Modeling the fate of expiratory aerosols and the associated infection risk in an aircraft cabin environment. Aerosol Sci. Technol. 43(3), 322–343 (2009). https://doi.org/10.1080/02786820802641461

    Article  Google Scholar 

  15. Winter, S., Meyenberg, M., Schmeling, D.: A moving thermal manikin for the simulation of walking passengers in aircrafts or trains. In: Roomvent & Ventilation Conference 2018, pp. 1097–1102 (2018)

    Google Scholar 

Download references

Acknowledgments

This work was funded by the DLR project GANDALF. Special thanks to André Volkmann and Felix Werner (preparation of experiments), Andrey Shishkin (support for the CFD modeling), and Annika Köhne (proofreading).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Webner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Webner, F., Kohl, A., Schmeling, D., Wagner, C. (2024). Aerosol Spread in a Generic Train Entrance: Comparison Between Experiment and Numerical Simulation. In: Dillmann, A., Heller, G., Krämer, E., Wagner, C., Weiss, J. (eds) New Results in Numerical and Experimental Fluid Mechanics XIV. STAB/DGLR Symposium 2022. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 154. Springer, Cham. https://doi.org/10.1007/978-3-031-40482-5_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40482-5_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40481-8

  • Online ISBN: 978-3-031-40482-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics