Skip to main content

A Grasping System with Structured Light 3D Machine Vision Guided Strategy Optimization

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14118))

  • 533 Accesses

Abstract

In scenarios such as automated sorting in logistics warehouses, automated assembly on industrial production lines, and transportation of rescue tasks and items, it is necessary to quickly grasp and place objects. Although existing methods can achieve simple object grabbing and placement, when selecting specific objects for grabbing, the grabbing strategy is usually based on the priority of the target object recognition matching score, and the grabbing strategy is relatively single. This paper introduces a robot grabbing system based on the optimization of structured light 3D imaging machine vision guidance strategy. First, the pose of all grabbing objects in the scene is estimated, and the optimal grabbing sequence is calculated, so as to achieve rapid classified grabbing and placement of sorted objects. First, the objects in the scene are scanned by a structured light camera, and the captured objects are modeled. Secondly, the optimized point-to-point feature matching algorithm is used to estimate the pose of scene objects and obtain item pose information. Finally, the robot plans the optimal order of grasping objects based on the optimized Monte Carlo tree search algorithm. This grabbing strategy can consider the distance of the grabbing path and the relevant weights of the matching score before conducting the operation.

The paper is supported by the Tertiary Education Scientific research project of Guangzhou Municipal Education Bureau under grant No. 202235165.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Du, S.: Vision-based robotic grasping from object localization, object pose estimation to grasp estimation for parallel grippers: a review. Artif. Intell. Rev. Int. Sci. Eng. J. 54(3) (2021)

    Google Scholar 

  2. Rusu, R.B., Bradski, G.R., Thibaux, R., et al.: Fast 3D recognition and pose using the viewpoint feature histogram. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 18–22 October 2010, Taipei, Taiwan. IEEE (2010)

    Google Scholar 

  3. Drost, B., Ulrich, M., Navab, N., et al.: Model globally, match locally: efficient and robust 3D object recognition. IEEE (2010)

    Google Scholar 

  4. Wang, H., Wang, H., Zhuang, C.: 6D pose estimation from point cloud using an improved point pair features method. In: International Conference on Control, Automation and Robotics. IEEE (2021)

    Google Scholar 

  5. Yang, Y., Liu, Y., Liang, H., et al.: Attribute-based robotic grasping with one-grasp adaptation (2021)

    Google Scholar 

  6. Zhang, G., Jia, S., Zeng, D., et al.: Object detection and grabbing based on machine vision for service robot. In: 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). IEEE (2018)

    Google Scholar 

  7. Zhang, M.M., Atanasov, N., et al.: Active end-effector pose selection for tactile object recognition through monte Carlo tree search. In: IEEE International Conference on Intelligent Robots and Systems (2017)

    Google Scholar 

  8. Browne, C.B., Powley, E., Whitehouse, D., et al.: A survey of monte Carlo tree search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

    Article  Google Scholar 

  9. Zagoruyko, S., Labbé, Y., Kalevatykh, I., et al.: Monte-Carlo tree search for efficient visually guided rearrangement planning (2019)

    Google Scholar 

  10. Kang, M., Kee, H., Kim, J., Oh, S.: Grasp planning for occluded objects in a confined space with lateral view using monte Carlo tree search. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, pp. 10921–10926 (2022). https://doi.org/10.1109/IROS47612.2022.9981069

  11. Pan, Z., Hauser, K.: Decision making in joint push-grasp action space for large-scale object sorting (2020)

    Google Scholar 

  12. Cai, L., Liu, Y., et al.: Color recognition and dynamic decision-making model of 6 axis of industrial robot based on embedded system

    Google Scholar 

  13. Mavrakis, N., Amir, M., Stolkin, R.: Safe robotic grasping: minimum impact-force grasp selection. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2017)

    Google Scholar 

  14. Nieuwenhuisen, M., Droeschel, D., Holz, D., et al.: Mobile bin picking with an anthropomorphic service robot. IEEE (2013)

    Google Scholar 

  15. Huang, E., Jia, Z., Mason. M.T.: Large-scale multi-object rearrangement. In: 2019 International Conference on Robotics and Automation (ICRA) (2019)

    Google Scholar 

  16. Geng, J.: Structured light 3D surface imaging: a tutorial. Adv. Opt. Photon. 3(2), 128–160 (2011)

    Google Scholar 

  17. Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: Seventh IEEE International Conference on Computer Vision. IEEE (1999)

    Google Scholar 

  18. Tsai, R.Y., Lenz, R.K.: A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. IEEE Trans. Robot. Autom. 5(3), 345–358 (1989)

    Article  Google Scholar 

  19. Shah, M.: Solving the robot-world/hand-eye calibration problem using the Kronecker product. ASME J. Mech. Rob. 5(3), 031007 (2013)

    Google Scholar 

  20. Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vis. 13(2), 119–152 (1994)

    Article  Google Scholar 

  21. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_29

    Chapter  Google Scholar 

  22. Kocsis, L., Szepesvári, C., Willemson, J.: Improved Monte-Carlo Search. University Tartu (2013)

    Google Scholar 

  23. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47, 235–325 (2002)

    Article  MATH  Google Scholar 

  24. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: IEEE International Conference on Robotics & Automation. IEEE (2009)

    Google Scholar 

  25. Buch, G., Kraft, D., Kämäräinen, J.-K., Petersen, H.G., Krüger, N.: Pose estimation using local structure-specific shape and appearance context. In: International Conference on Robotics and Automation (ICRA) (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingxi Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, J. et al. (2023). A Grasping System with Structured Light 3D Machine Vision Guided Strategy Optimization. In: Jin, Z., Jiang, Y., Buchmann, R.A., Bi, Y., Ghiran, AM., Ma, W. (eds) Knowledge Science, Engineering and Management. KSEM 2023. Lecture Notes in Computer Science(), vol 14118. Springer, Cham. https://doi.org/10.1007/978-3-031-40286-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40286-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40285-2

  • Online ISBN: 978-3-031-40286-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics