Skip to main content

Operational Complexity in Subregular Classes

  • Conference paper
  • First Online:
Implementation and Application of Automata (CIAA 2023)

Abstract

The state complexity of a regular operation is a function that assigns the maximal state complexity of the language resulting from the operation to the sizes of deterministic finite automata recognizing the operands of the operation. We study the state complexity of intersection, union, concatenation, star, and reversal on the classes of combinational, singleton, finitely generated left ideal, symmetric definite, star, comet, two-sided comet, ordered, star-free, and power-separating languages. We get the exact state complexities in all cases. The complexity of all operations on combinational languages is given by a constant function. The state complexity of the considered operations on singleton languages is \(\min \{m,n\}\), \(m+n-3\), \(m+n-2\), \(n-1\), and n, respectively, and on finitely generated left ideals, it is \(mn-2\), \(mn-2\), \(m+n-1\), \(n+1\), and \(2^{n-2}+2\). The state complexity of concatenation, star, and reversal is \(m2^{n}-2^{n-1}-m+1\), n, \(2^n\) and \(m2^{n-1}-2^{n-2}+1\), \(n+1\), \(2^{n-1}+1\) for star and symmetric definite languages, respectively. We also show that the complexity of reversal on ordered and power-separating languages is \(2^n-1\), which proves that the lower bound for star-free languages given by [Brzozowski, Liu, Int. J. Found. Comput. Sci. 23, 1261–1276, 2012] is tight. In all the remaining cases, the complexity is the same as for regular languages. Except for reversal on finitely generated left ideals and ordered languages, all our witnesses are described over a fixed alphabet.

Supported by the Slovak Grant Agency for Science (VEGA), contract 2/0096/23 “Automata and Formal Languages: Descriptional and Computational Complexity”.

M. Hospodár—This publication was supported by the Operational Programme Integrated Infrastructure (OPII) for the project 313011BWH2: “InoCHF - Research and development in the field of innovative technologies in the management of patients with CHF”, co-financed by the European Regional Development Fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bordihn, H., Holzer, M., Kutrib, M.: Determination of finite automata accepting subregular languages. Theor. Comput. Sci. 410(35), 3209–3222 (2009). https://doi.org/10.1016/j.tcs.2009.05.019

    Article  MathSciNet  MATH  Google Scholar 

  2. Brzozowski, J., Jirásková, G., Li, B., Smith, J.: Quotient complexity of bifix-, factor-, and subword-free regular languages. Acta Cybern. 21(4), 507–527 (2014). https://doi.org/10.14232/actacyb.21.4.2014.1

  3. Brzozowski, J.A., Jirásková, G., Li, B.: Quotient complexity of ideal languages. Theor. Comput. Sci. 470, 36–52 (2013). https://doi.org/10.1016/j.tcs.2012.10.055

    Article  MathSciNet  MATH  Google Scholar 

  4. Brzozowski, J., Jirásková, G., Zou, C.: Quotient complexity of closed languages. Theor. Comput. Sci. 54(2), 277–292 (2013). https://doi.org/10.1007/s00224-013-9515-7

    Article  MathSciNet  MATH  Google Scholar 

  5. Brzozowski, J.A., Liu, B.: Quotient complexity of star-free languages. Int. J. Found. Comput. Sci. 23(6), 1261–1276 (2012). https://doi.org/10.1142/S0129054112400515

    Article  MathSciNet  MATH  Google Scholar 

  6. Câmpeanu, C., Culik, K., Salomaa, K., Yu, S.: State complexity of basic operations on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, pp. 60–70. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45526-4_6

    Chapter  Google Scholar 

  7. Han, Y.S., Salomaa, K.: State complexity of basic operations on suffix-free regular languages. Theor. Comput. Sci. 410(27–29), 2537–2548 (2009). https://doi.org/10.1016/j.tcs.2008.12.054

    Article  MathSciNet  MATH  Google Scholar 

  8. Han, Y.S., Salomaa, K., Wood, D.: Operational state complexity of prefix-free regular languages. In: Ésik, Z., Fülöp, Z. (eds.) Automata, Formal Languages, and Related Topics, pp. 99–115. University of Szeged, Hungary (2009)

    Google Scholar 

  9. Hospodár, M., Mlynárčik, P., Olejár, V.: Operations on subregular languages and nondeterministic state complexity. In: Han, Y., Vaszil, G. (eds.) DCFS 2022. LNCS, vol. 13439, pp. 112–126. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-13257-5_9

  10. Jirásková, G., Šebej, J.: Reversal of binary regular languages. Theor. Comput. Sci. 449, 85–92 (2012). https://doi.org/10.1016/j.tcs.2012.05.008

    Article  MathSciNet  MATH  Google Scholar 

  11. Leiss, E.L.: Succinct representation of regular languages by Boolean automata. Theor. Comput. Sci. 13, 323–330 (1981). https://doi.org/10.1016/S0304-3975(81)80005-9

    Article  MathSciNet  MATH  Google Scholar 

  12. Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math. Doklady 11, 1373–1375 (1970)

    MATH  Google Scholar 

  13. Olejár, V., Szabari, A.: Closure properties of subregular languages under operations. Int. J. Found. Comput. Sci., online ready. https://doi.org/10.1142/S0129054123450016. Extended abstract in MCU 2022. LNCS, vol. 13419, pp. 126–142. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-13502-6_9

  14. Paz, A., Peleg, B.: Ultimate-definite and symmetric-definite events and automata. J. ACM 12(3), 399–410 (1965). https://doi.org/10.1145/321281.321292

    Article  MathSciNet  MATH  Google Scholar 

  15. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacobsthal’s function. Int. J. Found. Comput. Sci. 13(1), 145–159 (2002). https://doi.org/10.1142/S012905410200100X

    Article  MathSciNet  MATH  Google Scholar 

  16. Sipser, M.: Introduction to the theory of computation. Cengage Learning (2012)

    Google Scholar 

  17. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994). https://doi.org/10.1016/0304-3975(92)00011-F

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina Jirásková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hospodár, M., Jirásková, G. (2023). Operational Complexity in Subregular Classes. In: Nagy, B. (eds) Implementation and Application of Automata. CIAA 2023. Lecture Notes in Computer Science, vol 14151. Springer, Cham. https://doi.org/10.1007/978-3-031-40247-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40247-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40246-3

  • Online ISBN: 978-3-031-40247-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics