Skip to main content

Melatonin-Mediated Salt Stress Tolerance in Plants

  • Chapter
  • First Online:
Melatonin: Role in Plant Signaling, Growth and Stress Tolerance

Part of the book series: Plant in Challenging Environments ((PCE,volume 4))

  • 203 Accesses

Abstract

Among the abiotic stresses, salt stress could become more severe for sustainable agricultural practices and limit crop production. It affects plant growth performances and limits both the yield and quality of crop plants by disturbing the optimum physiology and metabolism of the plants. Melatonin (Mel) is a multifaceted signaling molecule and is involved in a wide range of physiological processes in plants such as improvement in growth, germination of seeds, adventitious rooting, photosynthetic processes, and osmoregulation. Importantly, Mel acts as an antioxidant with a significant role in the regulation of cellular redox homeostasis by scavenging excessive accumulation of toxic reactive oxygen species (ROS) as well as reactive nitrogen species (RNS) and also enhances the antioxidant system in the plants under stress conditions, including salt stress. Recently, Mel has been implicated in combating salt-induced toxicities by regulating multiple plant processes such as enhancing the level of osmoregulatory substances, up-regulating Na+ exclusion and sequestration, increasing the K+/Na+ ratio, protecting photosynthetic pigment system and biomolecules, regulating stomatal movements and gene expression of salt stress-associated genes. In this compiled work, we have comprehensively discussed the regulatory role of Mel in augmenting salt stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18

    Article  Google Scholar 

  • Almeida DM, Oliveira MM, Saibo NJ (2017) Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics Mol Bio 40:326–345

    Article  CAS  Google Scholar 

  • Alvi AF, Sehar Z, Fatma M, Masood A, Khan NA (2022) Strigolactone: an emerging growth regulator for developing resilience in plants. Plants 11(19):2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2007) Melatonin promotes adventitious-and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. J Pineal Res 42:147–152

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2009) Chemical stress by different agents affects the melatonin content of barley roots. J Pineal Res 46:295–299

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2013) Growth conditions determine different melatonin levels in Lupinus albus L. J Pineal Res 55:149–155

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2015) Functions of melatonin in plants: a review. J Pineal Res 59:133–150

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2018) Melatonin and its relationship to plant hormones. Annuals of Botany 121:195–207

    Article  CAS  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019) Melatonin: a new plant hormone and/or a plant master regulator? Trends Plant Sci 24:38–48

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Lee HY, Lee K, Back K (2014a) Caffeic acid O-methyltransferase is involved in the synthesis of melatonin by methylating N-acetylserotonin in Arabidopsis. J Pineal Res 57:219–227

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Lee HY, Lee K, Park S, Back K (2014b) Cellular localization and kinetics of the rice melatonin biosynthetic enzymes SNAT and ASMT. J Pineal Res 56:107–114

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Qi WB, Reiter RJ, Wei W, Wang BM (2009) Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. J Plant Physiol 166:324–328

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Gu Q, Yu X, Huang L, Xu S, Wang R, Shen W, Shen W (2018) Hydrogen peroxide acts downstream of melatonin to induce lateral root formation. Ann Bot 121:1127–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Li H, Yang K, Wang Y, Yang L, Hu L, Liu R, Shi Z (2019) Melatonin facilitates lateral root development by coordinating PAO-derived hydrogen peroxide and Rboh-derived superoxide radical. Free Radic Biol Med 143:534–544

    Article  CAS  PubMed  Google Scholar 

  • Dawood MG, El-Awadi ME (2015) Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Biológica Colombiana 20:223–235

    Google Scholar 

  • Debnath B, Hussain M, Irshad M, Mitra S, Li M, Liu S, Qiu D (2018) Exogenous melatonin mitigates acid rain stress to tomato plants through modulation of leaf ultrastructure, photosynthesis and antioxidant potential. Molecules 23:388

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara HW, Schloot W (1995) Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res 18:28–31

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Munns R, Colmer TD (2015) Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot 115:419–431

    Article  CAS  PubMed  Google Scholar 

  • Galano A, Tan DX, Reiter RJ (2011) Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res 51:1–16

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Ouyang C, Wang S, Xu Y, Tang L, Chen F (2008) Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings. Plant Soil Environ 54:374–381

    Article  CAS  Google Scholar 

  • García JJ, López-Pingarrón L, Almeida-Souza P, Tres A, Escudero P, García-Gil FA, Tan DX, Reiter RJ, Ramírez JM, Bernal-Pérez M (2014) Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: a review. J Pineal Res 56:225–237

    Article  PubMed  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51:463–499

    Article  CAS  Google Scholar 

  • Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, Hara M, Suzuki T, Reiter RJ (1995) Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int 35:627–634

    CAS  PubMed  Google Scholar 

  • Hernandez-Ruiz J, Cano A, Arnao MB (2005) Melatonin: a growth-stimulating compound present in lupin tissues. Planta 220:140–144

    Article  Google Scholar 

  • Hilal B, Khan TA, Fariduddin Q (2023) Recent advances and mechanistic interactions of hydrogen sulfide with plant growth regulators in relation to abiotic stress tolerance in plants. Plant Physiol Biochem 1996:1065–1083

    Article  Google Scholar 

  • Hwang OJ, Back K (2018) Melatonin is involved in skotomorphogenesis by regulating brassinosteroid biosynthesis in rice plants. J Pineal Res 65:e12495

    Article  PubMed  Google Scholar 

  • Jiang C, Cui Q, Feng K, Xu D, Li C, Zheng Q (2016) Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. Acta Physiol Plant 38:1–9

    Article  Google Scholar 

  • Kanwar MK, Yu J, Zhou J (2018) Phytomelatonin: recent advances and future prospects. J Pineal Res 65:12526

    Article  Google Scholar 

  • Kaur H, Bhatla SC (2016) Melatonin and nitric oxide modulate glutathione content and glutathione reductase activity in sunflower seedling cotyledons accompanying salt stress. Nitric Oxide 59:42–53

    Article  CAS  PubMed  Google Scholar 

  • Ke Q, Ye J, Wang B, Ren J, Yin L, Deng X, Wang S (2018) Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism. Front Plant Sci 9:914

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan TA, Fariduddin Q, Nazir F, Saleem (2020) Melatonin in business with abiotic stresses in plants. Physiol Mol Biol Plants 26:1931–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan TA, Saleem M, Fariduddin Q (2022a) Melatonin influences stomatal behavior, root morphology, cell viability, photosynthetic responses, fruit yield, and fruit quality of tomato plants exposed to salt stress. Journal of Plant Growth Regulation 42:1–25

    CAS  Google Scholar 

  • Khan TA, Saleem M, Fariduddin Q (2022b) Recent advances and mechanistic insights on melatonin-mediated salt stress signaling in plants. Plant Physiol Biochem 188:97–107

    Article  CAS  PubMed  Google Scholar 

  • Koyama FC, Carvalho TL, Alves E, da Silva HB, De Azevedo MF, Hemerly AS, Garcia CR (2013) The structurally related auxin and melatonin tryptophan-derivatives and their roles in Arabidopsis thaliana and in the human malaria parasite Plasmodium falciparum. J Eukaryot Microbiol 60:646–651

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Back K (2019) Melatonin-deficient rice plants show a common semidwarf phenotype either dependent or independent of brassinosteroid biosynthesis. J Pineal Res 66:e12537

    Article  PubMed  Google Scholar 

  • Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocyteS1. J Am Chem Soc 80:2587–2587

    Article  CAS  Google Scholar 

  • Li C, Wang P, Wei Z, Liang D, Liu C, Yin L, Jia D, Fu M, Ma F (2012) The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. J Pineal Res 53:298–306

    Article  CAS  PubMed  Google Scholar 

  • Li C, Tan DX, Liang D, Chang C, Jia D, Ma F (2015) Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. J Exp Bot 66:669–680

    Article  CAS  PubMed  Google Scholar 

  • Li H, Chang J, Chen H, Wang Z, Gu X, Wei C, Zhang Y, Ma J, Yang J, Zhang X (2017a) Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front Plant Sci 8:295

    PubMed  PubMed Central  Google Scholar 

  • Li X, Yu B, Cui Y, Yin Y (2017b) Melatonin application confers enhanced salt tolerance by regulating Na+ and Cl− accumulation in rice. Plant Growth Regul 83:441–454

    Article  CAS  Google Scholar 

  • Li J, Liu Y, Zhang M, Xu H, Ning K, Wang B, Chen M (2022) Melatonin increases growth and salt tolerance of Limonium bicolor by improving photosynthetic and antioxidant capacity. BMC Plant Biol 22:1–14

    PubMed  PubMed Central  Google Scholar 

  • Liang C, Zheng G, Li W, Wang Y, Hu B, Wang H, Wu H, Qian Y, Zhu XG, Tan DX, Chen SY (2015) Melatonin delays leaf senescence and enhances salt stress tolerance in rice. J Pineal Res 59:91–101

    Article  CAS  PubMed  Google Scholar 

  • MaGururani VJ, Tran LSP (2015) Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol Plant 8:1304–1320

    Article  Google Scholar 

  • Meng JF, Xu TF, Wang ZZ, Fang YL, Xi ZM, Zhang ZW (2014) The ameliorative effects of exogenous melatonin on grape cuttings under water-deficient stress: antioxidant metabolites, leaf anatomy, and chloroplast morphology. J Pineal Res 57:200–212

    Article  CAS  PubMed  Google Scholar 

  • Moustafa-Farag M, Mahmoud A, Arnao MB, Sheteiwy MS, Dafea M, Soltan M, Elkelish A, Hasanuzzaman M, Ai S (2020) Melatonin-induced water stress tolerance in plants: recent advances. Antioxidants 9:809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, David A, Yadav S, BaluÅ¡ka F, Bhatla SC (2014) Salt stress-induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons. Physiol Plant 152:714–728

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Okazaki M, Higuchi K, Aouini A, Ezura H (2010) Lowering intercellular melatonin levels by transgenic analysis of indoleamine 2, 3-dioxygenase from rice in tomato plants. J Pineal Res 49:239–247

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Pelagio-Flores R, Muñoz-Parra E, Ortiz-Castro R, López-Bucio J (2012) Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling. J Pineal Res 53:279–288

    Article  CAS  PubMed  Google Scholar 

  • Pieri C, Marra M, Moroni F, Recchioni R, Marcheselli F (1994) Melatonin: a peroxyl radical scavenger more effective than vitamin E. Life Sci 55:271–276

    Article  Google Scholar 

  • Posmyk MM, BaÅ‚abusta M, Wieczorek M, Sliwinska E, Janas KM (2009) Melatonin applied to cucumber (Cucumis sativus L.) seeds improves germination during chilling stress. J Pineal Res 46:214–223

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Fuentes-Broto L (2010) Melatonin: a multitasking molecule. Prog Brain Res 181:127–151

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Galano A (2014) Melatonin: exceeding expectations. Physiology 29:325–333

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Zhou Z, Cruz MHC, Fuentes-Broto L, Galano A (2015) Phytomelatonin: assisting plants to survive and thrive. Molecules 20:7396–7437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 61:253–278

    Article  CAS  PubMed  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Sarropoulou V, Dimassi-Theriou K, Therios I, Koukourikou-Petridou M (2012) Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C (Prunus avium× Prunus cerasus). Plant Physiol Biochem 61:162–168

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Qian Y, Tan DX, Reiter RJ, He C (2015) Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis. J Pineal Res 59:334–342

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Reiter RJ (2020) An evolutionary view of melatonin synthesis and metabolism related to its biological functions in plants. J Exp Bot 71:4677–4689

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Hardeland R, Manchester LC, Korkmaz A, Ma S, Rosales-Corral S, Reiter RJ (2012) Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J Exp Bot 63:577–597

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Hardeland R, Back K, Manchester LC, Alatorre-Jimenez MA, Reiter RJ (2016) On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species. J Pineal Res 61:27–40

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Yin L, Liang D, Li C, Ma F, Yue Z (2012) Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate–glutathione cycle. J Pineal Res 53:11–20

    Article  PubMed  Google Scholar 

  • Wang P, Sun X, Li C, Wei Z, Liang D, Ma F (2013) Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J Pineal Res 54:292–302

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhao Y, Reiter RJ, He C, Liu G, Lei Q, Zuo B, Zheng XD, Li Q, Kong J (2014) Changes in melatonin levels in transgenic ‘Micro-Tom’tomato overexpressing ovine AANAT and ovine HIOMT genes. J Pineal Res 56:134–142

    Article  CAS  PubMed  Google Scholar 

  • Wang LY, Liu JL, Wang WX, Sun Y (2016) Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica 54:19–27

    Article  Google Scholar 

  • Weeda S, Zhang N, Zhao X, Ndip G, Guo Y, Buck GA, Ren S (2014) Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PLoS One 9:93462

    Article  Google Scholar 

  • Wei W, Li QT, Chu YN, Reiter RJ, Yu XM, Zhu DH, Zhan WK, Ma B, Lin Q, Zhang JS, Chen SY (2015) Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot 66:695–707

    Article  CAS  PubMed  Google Scholar 

  • Wei J, Li DX, Zhang JR, Shan C, Rengel Z, Song ZB, Chen Q (2018) Phytomelatonin receptor PMTR 1-mediated signaling regulates stomatal closure in Arabidopsis thaliana. J Pineal Res 65:e12500

    Article  PubMed  Google Scholar 

  • Wen D, Gong B, Sun S, Liu S, Wang X, Wei M, Yang F, Li Y, Shi Q (2016) Promoting roles of melatonin in adventitious root development of Solanum lycopersicum L. by regulating auxin and nitric oxide signaling. Front Plant Sci 7:718

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Wang J, Wang W, Wang Y, Xu J, Li Z, Zhao X, Fu B (2021) Integrated analysis of the transcriptome and metabolome revealed the molecular mechanisms underlying the enhanced salt tolerance of rice due to the application of exogenous melatonin. Front Plant Sci 11:618680

    Article  PubMed  PubMed Central  Google Scholar 

  • Xin CP, Yang J, Zhu XG (2013) A model of chlorophyll a fluorescence induction kinetics with explicit description of structural constraints of individual photosystem II units. Photosynth Res 117:339–354

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Cai SY, Zhang Y, Wang Y, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Yu JQ, Reiter RJ, Zhou J (2016) Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. J Pineal Res 61:457–469

    Article  CAS  PubMed  Google Scholar 

  • Yan F, Wei H, Ding Y, Li W, Liu Z, Chen L, Tang S, Ding C, Jiang Y, Li G (2021) Melatonin regulates antioxidant strategy in response to continuous salt stress in rice seedlings. Plant Physiol Biochem 165:239–250

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Dai L, Wei Y, Deng Z, Li D (2020) Melatonin enhances salt stress tolerance in rubber tree (Hevea brasiliensis) seedlings. Ind Crop Prod 145:111990

    Article  CAS  Google Scholar 

  • Ye J, Wang S, Deng X, Yin L, Xiong B, Wang X (2016) Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiol Plant 38:1–3

    Article  Google Scholar 

  • Yeo A (1998) Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot 49:915–929

    CAS  Google Scholar 

  • Yu Y, Lv Y, Shi Y, Li T, Chen Y, Zhao D, Zhao Z (2018a) The role of phyto-melatonin and related metabolites in response to stress. Molecules 23:1887

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Wang A, Li X, Kou M, Wang W, Chen X, Xu T, Zhu M, Ma D, Li SJ (2018b) Melatonin-stimulated triacylglycerol breakdown and energy turnover under salinity stress contributes to the maintenance of plasma membrane H+–ATPase activity and K+/Na+ homeostasis in sweet potato. Front Plant Sci 9:256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu R, Zuo T, Diao P, Fu J, Fan Y, Wang Y, Zhao Q, Ma X, Lu W, Li A, Wang R (2021) Melatonin enhances seed germination and seedling growth of Medicago sativa under salinity via a putative melatonin receptor MsPMTR1. Front Plant Sci 12:702875

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Zhao B, Zhang HJ, Weeda S, Yang C, Yang ZC, Ren S, Guo YD (2013) Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). J Pineal Res 54:15–23

    Article  CAS  PubMed  Google Scholar 

  • Zhang HJ, Zhang NA, Yang RC, Wang L, Sun QQ, Li DB, Cao YY, Weeda S, Zhao B, Ren S, Guo YD (2014a) Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). J Pineal Res 57:269–279

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Zhang HJ, Zhao B, Sun QQ, Cao YY, Li R, Wu XX, Weeda S, Li L, Ren S, Reiter RJ (2014b) The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. J Pineal Res 56:39–50

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Zhang HJ, Sun QQ, Cao YY, Li X, Zhao B, Wu P, Guo YD (2017a) Proteomic analysis reveals a role of melatonin in promoting cucumber seed germination under high salinity by regulating energy production. Sci Rep 7:1–15

    Google Scholar 

  • Zhang R, Sun Y, Liu Z, Jin W, Sun Y (2017b) Effects of melatonin on seedling growth, mineral nutrition, and nitrogen metabolism in cucumber under nitrate stress. J Pineal Res 62:e12403

    Article  Google Scholar 

  • Zheng X, Tan DX, Allan AC, Zuo B, Zhao Y, Reiter RJ, Wang L, Wang Z, Guo Y, Zhou J, Shan D (2017) Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress. Sci Rep 7:1–2

    Google Scholar 

  • Zhou X, Zhao H, Cao K, Hu L, Du T, BaluÅ¡ka F, Zou Z (2016) Beneficial roles of melatonin on redox regulation of photosynthetic electron transport and synthesis of D1 protein in tomato seedlings under salt stress. Front Plant Sci 7:1823

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zuo Z, Sun L, Wang T, Miao P, Zhu X, Liu S, Song F, Mao H, Li X (2017) Melatonin improves the photosynthetic carbon assimilation and antioxidant capacity in wheat exposed to nano-ZnO stress. Molecules 22:1727

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, T.A., Hilal, B., Fariduddin, Q., Saleem, M. (2023). Melatonin-Mediated Salt Stress Tolerance in Plants. In: Mukherjee, S., Corpas, F.J. (eds) Melatonin: Role in Plant Signaling, Growth and Stress Tolerance. Plant in Challenging Environments, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-031-40173-2_16

Download citation

Publish with us

Policies and ethics