Skip to main content

Image Reconstruction for Rain Removal in Both Wavelet and Spatial Frequency Sub-bands Using W-CycleGANs

  • Conference paper
  • First Online:
Advances in Automation, Mechanical and Design Engineering (SAMDE 2022)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 138))

  • 132 Accesses

Abstract

Although many techniques are devised in rain removal research recently, using either the Convolutional Neural Network (CNN) [1] or the Generative Adversarial Network (GAN) [2], they always require both rain and no-rain training images exist in pairs to train their networks. Recently, the Cycle-Consistent Adversarial Networks (CycleGAN) [3] has demonstrated successful results in removing real rain distortion, without the no-rain training images [4]. Building on this success, we propose a new technique called the Wavelet-CycleGANs (W-CycleGANs) that has the same advantage. In addition, the wavelet properties can be used for the CycleGAN to remove rain from images at their frequency sub-bands, in the Hue, Saturation and Value (HSV) color space [5]. We train and compare the W-CycleGANs’ to the CycleGAN’s performance fairly, using the same set of rain images as the CycleGAN [4]. Their quantitative results are compared using the Natural Image Quality Evaluator (NIQE) [6] as real rain images in pairs simply do not exist in the real world. In addition, their qualitative results are compared using visual check at zoomed-in regions. Both results have demonstrated the W-CycleGANs’ superiority in removing real rain distortions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  2. Goodfellow, I., Pouget-Abadie, J., Mirza, M. et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst., 27 (2014)

    Google Scholar 

  3. Zhu, J.-Y., Park, T., Isola, P., Efros, A. A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251 (2017)

    Google Scholar 

  4. Tang, L.M., Lim, L.H., Siebert, P.: Removal of visual disruption caused by rain using cycle-consistent generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) Computer Vision—ECCV 2018 Workshops. ECCV 2018. Lecture Notes in Computer Science 11133 (2019)

    Google Scholar 

  5. Pascale, D.: A Review of RGB color spaces (2003)

    Google Scholar 

  6. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a completely blind image quality analyzer. IEEE Signal Process. Lett. 22(3), 209–212 (2013)

    Article  Google Scholar 

  7. Garg, K., Nayar, S.K.: Vision and rain. Int. J. Comput. Vision 75, 3–27 (2007)

    Article  Google Scholar 

  8. Li, S., Ren, W., Zhang, J., Yu, J., Guo, X.: Single image rain removal via a deep decomposition-composition network. Comput. Vis. Image Underst. 186, 48–57 (2019)

    Article  Google Scholar 

  9. Li, Y., Tan, R.T., Guo, X., Lu, J., Brown, M.S.: Rain streak removal using layer priors. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2736–2744 (2016)

    Google Scholar 

  10. Xu., Jing, Zhao, W., Liu, P., Tang, X.: An improved guidance image based method to remove rain and snow in a single image. Comput. Inf. Sci. 5, 49–55 (2012)

    Google Scholar 

  11. Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. IEEE Trans. Circuits Syst. Video Technol. 30(11), 3943–3956 (2020)

    Google Scholar 

  12. Wang, C., et al.: Perceptual adversarial networks for image-to-image transformation. IEEE Trans. Image Process. 27(8), 4066–4079 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Saravanan, G., Yamuna, G., Vivek, R.: A color image enhancement based on discrete wavelet transform. IJCA Proceedings on National Conference on Emerging Trends in Information and Communication Technology (2013)

    Google Scholar 

  14. Guo, T., Mousavi, H.S., Vu, T.H., Monga, V.: Deep wavelet prediction for image super-resolution. IEEE Conference on Computer Vision and Pattern Recognition Workshops (2017)

    Google Scholar 

  15. Fu, X., Huang, J., Ding, X., Liao, Y., Paisley, J.: Clearing the skies: a deep network architecture for single-image rain removal. IEEE Trans. Image Process. 26, 2944–2956 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Deep joint rain detection and removal from a single image. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1685–1694 (2017)

    Google Scholar 

  17. Ledig, C., Theis, L., Huszar, F. et al.: Photo-realistic single image super-resolution using a generative adversarial network. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 105–114 (2016)

    Google Scholar 

  18. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2536–2544 (2016)

    Google Scholar 

  19. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks (2015). CORR abs/1511.06434

    Google Scholar 

  20. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976 (2017)

    Google Scholar 

  21. Wei, Y., Zhang, Z., Wang, Y., Xu, M., Yang, Y., Yan, S., Wang, M.: DerainCycleGAN: rain attentive CycleGAN for single image deraining and rainmaking. IEEE Trans. Image Process. 30, 4788–4801 (2021)

    Article  Google Scholar 

  22. Qi, Y., Zhang, H., Jin, Z., Liu, W.: Depth-guided asymmetric CycleGAN for rain synthesis and image deraining. Kluwer Academic Publishers 81(25), 35935–35952 (2022)

    Google Scholar 

  23. Gupta, V., Mahle, R., Shriwas, R.S.: Image denoising using wavelet transform method. 2013 Tenth International Conference on Wireless and Optical Communications Networks (WOCN), pp. 1–4 (2013)

    Google Scholar 

  24. Song, J., Jeong, J., Park, D., Kim, H., Seo, D., Ye, J.: Unsupervised Denoising for Satellite Imagery using Wavelet Subband CycleGAN (2020). ArXiv abs/2002.09847

    Google Scholar 

  25. Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W.: Multi-level wavelet-cnn for image restoration. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 773–782 (2018)

    Google Scholar 

  26. Yang, W., Liu, J., Yang, S., Guo, Z.: Scale-free single image deraining via visibility enhanced recurrent wavelet learning. IEEE Trans. Image Process. 28(6), 2948–2961 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhao, J., Xie, J., Xiong, R., Ma, S., Huang, T., Gao, W.: Pyramid Convolutional Network for Single Image Deraining. CVPR Workshops (2019)

    Google Scholar 

  28. Vidakovic, B., Müller, P.: An Introduction to Wavelets. Lecture Notes in Statistics, Springer, New York 141, 1–18 (1999)

    Article  MATH  Google Scholar 

  29. Paszke, A., Gross, S., Chintala, S., Chanan, G.: PyTorch. GitHub repository (2021)

    Google Scholar 

  30. Alessandro CAPRA, Alfio CASTORINA and Silvia CORCHS: Dynamic Range Optimization by Local Contrast Correction and Histogram Image Analysis. 2006 Digest of Technical Papers International Conference on Consumer Electronics, pp. 309–310 (2006)

    Google Scholar 

  31. Padma Priya, G., Venkateswarlu, T.: An optimal gamma correction based image contrast enhancement using DWT-SVD. Int. J. Res. Advent Technol. (IJRAT) 6(8), 2184–2190 (2018)

    Google Scholar 

  32. Bull, D.R., Zhang, F.: Intelligent Image and Video Compression (Second Edition). Elsevier Science Publishing Co Inc, pp. 107–142 (2021)

    Google Scholar 

  33. Farid, H.: Blind inverse gamma correction. IEEE Trans. Image Process. 10(10), 1428–1433 (2001)

    Article  MATH  Google Scholar 

  34. Chiu, Y.-S., Cheng, F.-C., Huang, S.-C.: Efficient contrast enhancement using adaptive gamma correction and cumulative intensity distribution. 2011 IEEE International Conference on Systems, Man, and Cybernetics, Anchorage, pp. 2946–2950 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lai Lai Meng Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, L.L., Lim, L.H.I., Siebert, P. (2023). Image Reconstruction for Rain Removal in Both Wavelet and Spatial Frequency Sub-bands Using W-CycleGANs. In: Carbone, G., Laribi, M.A., Jiang, Z. (eds) Advances in Automation, Mechanical and Design Engineering. SAMDE 2022. Mechanisms and Machine Science, vol 138. Springer, Cham. https://doi.org/10.1007/978-3-031-40070-4_14

Download citation

Publish with us

Policies and ethics