Skip to main content

Contextual Boosting to Explainable SVM Classification

  • Conference paper
  • First Online:
Fuzzy Logic and Technology, and Aggregation Operators (EUSFLAT 2023, AGOP 2023)

Abstract

Finding suitable mechanisms whereby rationale behind support vector machine (SVM) predictions can be known and understood without substantial difficulties is an ongoing challenge. Aiming to find such a mechanism, we look into the contextualization of SVM models. Hence, we propose a novel explainable SVM classifier that makes use of a parallel arrangement of contextualized SVM models for offering predictions that depend on a particular event, situation or idea. The proposed classifier allows decision makers to state in a clear manner the context of the predictions they would like to be offered. This aspect is deemed to be important since decision makers can take advantage of the improvement in the interpretability of such contextualized predictions for making more informed decisions. The improvement in interpretability is illustrated through an example in which digitized handwritten vowels are contextually identified. Another example where hand gestures are recognized by means of electromyography (EMG) signals shows how the proposed classifier can also improve the accuracy of the resulting models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986). https://doi.org/10.1016/S0165-0114(86)80034-3

    Article  MathSciNet  MATH  Google Scholar 

  2. Barakat, N.H., Bradley, A.P.: Rule extraction from support vector machines: a review. Neurocomputing 74(1), 178–190 (2010). https://doi.org/10.1016/j.neucom.2010.02.016

    Article  Google Scholar 

  3. Barredo Arrieta, A., et al.: Explainable Artificial Intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020). https://doi.org/10.1016/j.inffus.2019.12.012

    Article  Google Scholar 

  4. Bovolo, F., Bruzzone, L., Marconcini, M.: A novel context-sensitive SVM for classification of remote sensing images. In: 2006 IEEE International Symposium on Geoscience and Remote Sensing, pp. 2498–2501 (2006). https://doi.org/10.1109/IGARSS.2006.646

  5. Bruzzone, L., Persello, C.: A novel context-sensitive semisupervised SVM classifier robust to mislabeled training samples. IEEE Trans. Geosci. Remote Sens. 47(7), 2142–2154 (2009). https://doi.org/10.1109/TGRS.2008.2011983

    Article  Google Scholar 

  6. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998). https://doi.org/10.1023/A:1009715923555

    Article  Google Scholar 

  7. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997). https://doi.org/10.1006/jcss.1997.1504

    Article  MathSciNet  MATH  Google Scholar 

  8. García-Gutiérrez, J., Mateos-García, D., Garcia, M., Riquelme-Santos, J.C.: An evolutionary-weighted majority voting and support vector machines applied to contextual classification of LiDAR and imagery data fusion. Neurocomputing 163, 17–24 (2015). https://doi.org/10.1016/j.neucom.2014.08.086

    Article  Google Scholar 

  9. Graf, H., Cosatto, E., Bottou, L., Dourdanovic, I., Vapnik, V.: Parallel support vector machines: the cascade SVM. In: Saul, L., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems, vol. 17. MIT Press (2004). https://proceedings.neurips.cc/paper/2004/file/d756d3d2b9dac72449a6a6926534558a-Paper.pdf

  10. Guidotti, R., Monreale, A., Giannotti, F., Pedreschi, D., Ruggieri, S., Turini, F.: Factual and counterfactual explanations for black box decision making. IEEE Intell. Syst. 34(6), 14–23 (2019). https://doi.org/10.1109/MIS.2019.2957223

    Article  Google Scholar 

  11. Kaminski, M.E.: The right to explanation, explained. Berkeley Technol. Law J. 34, 189 (2019). https://doi.org/10.15779/Z38TD9N83H

    Article  Google Scholar 

  12. Lengua, M.A.C., Quiroz, E.A.P.: A systematic literature review on support vector machines applied to classification. In: 2020 IEEE Engineering International Research Conference (EIRCON), pp. 1–4. IEEE (2020)

    Google Scholar 

  13. Lobov, S., Krilova, N., Kastalskiy, I., Kazantsev, V., Makarov, V.: EMG data for gestures data set - UCI machine learning repository (2019). https://archive.ics.uci.edu/ml/datasets/EMG+data+for+gestures

  14. Loor, M., De Tré, G.: On the need for augmented appraisal degrees to handle experience-based evaluations. Appl. Soft Comput. 54, 284–295 (2017). https://doi.org/10.1016/j.asoc.2017.01.009

    Article  Google Scholar 

  15. Loor, M., De Tré, G.: Identifying and properly handling context in crowdsourcing. Appl. Soft Comput. 73, 203–214 (2018). https://doi.org/10.1016/j.asoc.2018.04.062

    Article  Google Scholar 

  16. Loor, M., De Tré, G.: Explaining computer predictions with augmented appraisal degrees. In: 2019 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (EUSFLAT 2019). Atlantis Press (2019). https://doi.org/10.2991/eusflat-19.2019.24

  17. Loor, M., De Tré, G.: Contextualizing support vector machine predictions. Int. J. Comput. Intell. Syst. 13, 1483–1497 (2020). https://doi.org/10.2991/ijcis.d.200910.002

    Article  Google Scholar 

  18. Loor, M., De Tré, G.: Handling subjective information through augmented (fuzzy) computation. Fuzzy Sets Syst. 391, 47–71 (2020). https://doi.org/10.1016/j.fss.2019.05.007

    Article  MathSciNet  MATH  Google Scholar 

  19. Loor, M., Tapia-Rosero, A., De Tré, G.: An open-source software library for explainable support vector machine classification. In: 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–7 (2022). https://doi.org/10.1109/FUZZ-IEEE55066.2022.9882731

  20. Malowany, D., Guterman, H.: Biologically inspired visual system architecture for object recognition in autonomous systems. Algorithms 13(7), 167 (2020)

    Article  MathSciNet  Google Scholar 

  21. Martens, D., Baesens, B., Van Gestel, T.: Decompositional rule extraction from support vector machines by active learning. IEEE Trans. Knowl. Data Eng. 21(2), 178–191 (2009). https://doi.org/10.1109/TKDE.2008.131

    Article  Google Scholar 

  22. Migliorini, S., Belussi, A., Quintarelli, E., Carra, D.: A context-based approach for partitioning big data. In: EDBT, pp. 431–434 (2020)

    Google Scholar 

  23. Negri, R.G., Dutra, L.V., Sant’Anna, S.J.S.: An innovative support vector machine based method for contextual image classification. ISPRS J. Photogramm. Remote. Sens. 87, 241–248 (2014). https://doi.org/10.1016/j.isprsjprs.2013.11.004

    Article  Google Scholar 

  24. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?”: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 1135–1144. ACM, New York (2016). https://doi.org/10.1145/2939672.2939778

  25. Vapnik, V.N., Vapnik, V.: Statistical Learning Theory, vol. 1. Wiley, New York (1998)

    MATH  Google Scholar 

  26. Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  27. Zhu, P., Hu, Q.: Rule extraction from support vector machines based on consistent region covering reduction. Knowl.-Based Syst. 42, 1–8 (2013). https://doi.org/10.1016/j.knosys.2012.12.003

    Article  Google Scholar 

Download references

Acknowledgements

This study has been supported by both the research project “Interpretable Artificial Intelligence (XAI) in Group Decision-Making” (FIEC-200-2020) from ESPOL Polytechnic University and the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” from the Flemish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Loor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Loor, M., Tapia-Rosero, A., De Tré, G. (2023). Contextual Boosting to Explainable SVM Classification. In: Massanet, S., Montes, S., Ruiz-Aguilera, D., González-Hidalgo, M. (eds) Fuzzy Logic and Technology, and Aggregation Operators. EUSFLAT AGOP 2023 2023. Lecture Notes in Computer Science, vol 14069. Springer, Cham. https://doi.org/10.1007/978-3-031-39965-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39965-7_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39964-0

  • Online ISBN: 978-3-031-39965-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics