Skip to main content

Consequences and Extensions of the Brunn-Minkowski Theorem

  • Chapter
  • First Online:
New Trends in Geometric Analysis

Part of the book series: RSME Springer Series ((RSME,volume 10))

  • 206 Accesses

Abstract

In this work we study some extensions and consequences of the fundamental Brunn-Minkowski inequality, using two different approaches: on one hand we deal with the so-called Grünbaum inequality, a beautiful consequence of the Brunn-Minkowski theorem which asserts, roughly speaking, that any hyperplane passing through the centroid divides any compact convex set into two not too small parts; on the other hand we study discrete versions of the Brunn-Minkowski inequality for the lattice point enumerator, that is, the functional counting how many points with integer coordinates are contained in a bounded set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alonso-Gutiérrez, D., Lucas, E., Yepes Nicolás, J.: On Rogers-Shephard type inequalities for the lattice point enumerator. Commun. Contemp. Math. (2022). https://doi.org/10.1142/S0219199722500225

  2. Barthe, F.: Autour de l’inégalité de Brunn-Minkowski. Ann. Fac. Sci. Toulouse: Math. Sér. 6, Tome 12(2), 127–178 (2003)

    Google Scholar 

  3. Borell, C.: Convex set functions in d-space. Period. Math. Hungar. 6, 111–136 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brascamp, H.J., Lieb, E.H.: On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions and with an application to the diffusion equation. J. Func. Anal. 22(4), 366–389 (1976)

    Article  MATH  Google Scholar 

  5. Cohn, D.L.: Measure Theory, 2nd revised edn. Birkhäuser/Springer, New York (2013)

    Book  Google Scholar 

  6. Fradelizi, M., Meyer, M., Yaskin, V.: On the volume of sections of a convex body by cones. Proc. Amer. Math. Soc. 145(7), 3153–3164 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gardner, R.J.: The Brunn-Minkowski inequality. Bull. Am. Math. Soc. 39(3), 355–405 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gardner, R.J., Gronchi, P.: A Brunn-Minkowski inequality for the integer lattice. Trans. Am. Math. Soc. 353(10), 3995–4024 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Green, B., Tao, T.: Compressions, convex geometry and the Freiman-Bilu theorem. Q. J. Math. 57(4), 495–504 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gritzmann, P., Wills, J.M.: Lattice points. In: Gruber, P.M., Wills, J.M. (eds.) Handbook of Convex Geometry, pp. 765–798. North-Holland, Amsterdam (1993)

    Chapter  Google Scholar 

  11. Gritzmann, P., Wills, J.M.: Finite packing and covering. In: Gruber, P.M., Wills, J.M. (eds.) Handbook of Convex Geometry, pp. 861–898. North-Holland, Amsterdam (1993)

    Chapter  Google Scholar 

  12. Gruber, P. M.: Convex and Discrete Geometry. Springer, Berlin (2007)

    MATH  Google Scholar 

  13. Grünbaum, B.: Partitions of mass-distributions and of convex bodies by hyperplanes. Pac. J. Math. 10, 1257–1261 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  14. Halikias, D., Klartag B., Slomka, B.A.: Discrete variants of Brunn-Minkowski type inequalities. Ann. Fac. Sci. Toulouse: Math. Sér. 6, Tome 30(2), 267–279 (2021)

    Google Scholar 

  15. Hernández Cifre, M.A., Lucas, E.: On discrete log-Brunn-Minkowski type inequalities. SIAM J. Discrete Math. 36(3), 1748–1760 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hernández Cifre, M.A., Iglesias, D., Yepes Nicolás, J.: On a discrete Brunn-Minkowski type inequality. SIAM J. Discrete Math. 32, 1840–1856 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hernández Cifre, M.A., Lucas, E., Yepes Nicolás, J.: On discrete \(L_p\) Brunn-Minkowski type inequalities. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 116, Article 164 (2022)

    Google Scholar 

  18. Iglesias, D., Lucas, E., Yepes Nicolás, J.: On discrete Brunn-Minkowski and isoperimetric type inequalities. Discrete Math. 345(1), 112640 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. Iglesias, D., Yepes Nicolás, J., Zvavitch, A.: Brunn-Minkowski type inequalities for the lattice point enumerator. Adv. Math. 370, 107193 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lusternik, L. A.: Die Brunn-Minkowskische Ungleichung für beliebige messbare Mengen. C. R. (Dokl.) Acad. Sci. URSS 8, 55–58 (1935)

    MATH  Google Scholar 

  21. Lutwak, E.: The Brunn-Minkowski-Firey theory, I: Mixed volumes and the Minkowski problem. J. Diff. Geom. 38, 131–150 (1993)

    MATH  Google Scholar 

  22. Lutwak, E.: The Brunn-Minkowski-Firey theory, II: Affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996)

    MATH  Google Scholar 

  23. Marín Sola, F., Yepes Nicolás, J.: On Grünbaum type inequalities. J. Geom. Anal. 31(10), 9981–9995 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Marín Sola, F., Yepes Nicolás, J.: A simple proof of the functional version of Grünbaum’s inequality. Submitted

    Google Scholar 

  25. Matoušek, J.: Lectures on discrete geometry. Graduate Texts in Mathematics, vol. 212. Springer, New York (2002)

    Google Scholar 

  26. Meyer, M., Nazarov, F., Ryabogin D., Yaskin, V.: Grünbaum-type inequality for log-concave functions. Bull. Lond. Math. Soc. 50(4), 745–752 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Milman, V.D.: Inégalité de Brunn-Minkowski inverse et applications à la théorie locale des espaces normés (An inverse form of the Brunn-Minkowski inequality, with applications to the local theory of normed spaces). C. R. Acad. Sci. Paris Ser. I Math. 302(1), 25–28 (1986)

    MathSciNet  MATH  Google Scholar 

  28. Myroshnychenko, S., Stephen, M., Zhang, N.: Grünbaum’s inequality for sections. J. Funct. Anal. 275(9), 2516–2537 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ruzsa, I.Z.: Sum of sets in several dimensions. Combinatorica 14, 485–490 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ruzsa, I.Z.: Sets of sums and commutative graphs. Studia Sci. Math. Hungar. 30, 127–148 (1995)

    MathSciNet  MATH  Google Scholar 

  31. Schneider, R.: Convex bodies: the Brunn-Minkowski theory. 2nd expanded ed. Encyclopedia of Mathematics and Its Applications, vol. 151. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  32. Slomka, B.A.: A Remark on discrete Brunn-Minkowski type inequalities via transportation of measure. Available via ArXiv. https://arxiv.org/abs/2008.00738

  33. Stephen, M., Zhang, N.: Grünbaum’s inequality for projections. J. Funct. Anal. 272(6), 2628–2640 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is part of the grant PID2021-124157NB-I00, funded by MCIN/ AEI/10.13039/501100011033/ “ERDF A way of making Europe.” It is also supported by “Ayudas a proyectos para el desarrollo de investigación científica y técnica por grupos competitivos,” included in the Programa Regional de Fomento de la Investigación Científica y Técnica (Plan de Actuación 2022) of the Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia, REF. 21899/PI/22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Yepes Nicolás .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cifre, M.A.H., Lucas, E., Sola, F.M., Nicolás, J.Y. (2023). Consequences and Extensions of the Brunn-Minkowski Theorem. In: Alarcón, A., Palmer, V., Rosales, C. (eds) New Trends in Geometric Analysis. RSME Springer Series, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-031-39916-9_9

Download citation

Publish with us

Policies and ethics