Skip to main content

Relativistic Pulse Scattering

  • Chapter
  • First Online:
The Advancing World of Applied Electromagnetics

Abstract

The scattering of electromagnetic signals by an object in uniform translational motion may be computed with the four-step frame-hopping method arising from the special theory of relativity. As the scattered signals are calculated in an inertial reference frame that is attached to the object, many standard analytical and numerical methods can be used for that calculation; furthermore, the constitutive parameters and the object’s shape and size at rest enter that calculation. The scattered signal in the laboratory inertial reference frame depends, in general, on the object’s size, shape, orientation, composition, and velocity, as well as on the incident signal. The forward-scattering theorem holds true for co-moving observers but not for other inertial observers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.J. Bowman, T.B.A. Senior, P.L.E. Uslenghi (eds.), Electromagnetic and Acoustic Scattering by Simple Shapes (North-Holland, Amsterdam, The Netherlands, 1969)

    Google Scholar 

  2. V.V. Varadan, A. Lakhtakia, V.K. Varadan (eds.), Field Representations and Introduction to Scattering (Elsevier Science, Amsterdam, The Netherlands 1991)

    Google Scholar 

  3. J.J.H. Wang, Generalized Moment Methods the Netherlands in Electromagnetics: Formulation and Computer Solution of Integral Equations (Wiley-Interscience, New York, NY, USA, 1991)

    Google Scholar 

  4. A. Lakhtakia, Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetic fields. Int. J. Mod. Phys. C 3, 583–603 (1992)

    Google Scholar 

  5. K.S. Kunz, R.S. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC Press, Boca Raton, FL, USA, 1993)

    Google Scholar 

  6. R.F. Harrington, Field Computation by Moment Methods (IEEE Press, Piscataway, 1993)

    Google Scholar 

  7. P.B. Monk, Finite Element Methods for Maxwell’s Equations (Oxford University Press, Oxford, UK, 2003)

    Google Scholar 

  8. A. Taflove, S.C. Hagness, Computational Electromagnetics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Norwood, MA, USA, 2005)

    Google Scholar 

  9. J.-M. Jin, The Finite Element Method in Electromagnetics, 3rd edn. (Wiley, Hoboken, NJ, USA, 2014)

    Google Scholar 

  10. M.N.O. Sadiku, Numerical Techniques in Electromagnetics with MATLAB®, 3rd edn. (CRC Press, Boca Raton, FL, USA, 2009)

    Google Scholar 

  11. A.V. Osipov, S.A. Tretyakov, Modern Electromagnetic Scattering Theory with Applications (Wiley, Chichester, UK, 2017)

    Google Scholar 

  12. A. Lakhtakia, The Ewald–Oseen extinction theorem and the extended boundary condition method, in A. Lakhtakia, C.M. Furse (eds.), The World of Applied Electromagnetics—In Appreciation of Magdy Fahmy Iskander (Springer, Cham, Switzerland, 2018), pp. 481–513

    Google Scholar 

  13. A. Lakhtakia, Using boundary conditions with the Ewald–Oseen extinction theorem, in T.G. Mackay, A. Lakhtakia (eds.), Adventures in Contemporary Theoretical Electromagnetics (Springer, Cham, Switzerland, 2023), pp. 229–244

    Google Scholar 

  14. J.B. Geddes III, A. Lakhtakia, Numerical investigation of reflection, refraction, and diffraction of pulsed optical beams by chiral sculptured thin films. Opt. Commun. 252, 307–320 (2005)

    Google Scholar 

  15. R. Agrahari, A. Lakhtakia, P.K. Jain, Toward information transfer around a concave corner by a surface-plasmon-polariton wave. IEEE Photon. J. 11, 6100112 (2019)

    Google Scholar 

  16. D.F. Kelley, R.J. Luebbers, Piecewise linear recursive convolution for dispersive media using FDTD. IEEE Trans. Antennas Propag. 44, 792–797 (1996)

    Google Scholar 

  17. A.Z. Elsherbeni, V. Demir, The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB® Simulations, 2nd edn. (SciTech, Edison, NJ, USA, 2009)

    Google Scholar 

  18. J. Van Bladel, Relativity and Engineering (Springer, Berlin, Germany, 1984)

    Google Scholar 

  19. A. Einstein, Zur Elektrodynamik bewegter Körper. Ann. Phys. (4th. Series) 17, 891–921 (1905)

    Google Scholar 

  20. C. Yeh, Reflection and transmission of electromagnetic waves by a moving dielectric medium. J. Appl. Phys. 36, 3513–3517 (1965)

    Google Scholar 

  21. W.J. Noble, C.K. Ross, The reflection and transmission of electromagnetic waves by a moving dielectric slab. I. Solution in the moving frame. Am. J. Phys. 37, 1249–1253 (1969)

    Google Scholar 

  22. W.J. Noble, C.K. Ross, The reflection and transmission of electromagnetic waves by a moving dielectric slab. II. Solution in the fixed frame. Am. J. Phys. 37, 1253–1257 (1969)

    Google Scholar 

  23. K.C. Lang, Diffraction of electromagnetic waves by a moving impedance wedge. Radio Sci. 6, 655–663 (1971)

    Google Scholar 

  24. D.M. LeVine, Scattering from a moving cylinder: Oblique incidence. Radio Sci. 8, 497–504 (1973)

    Google Scholar 

  25. T. Shiozawa, Electromagnetic scattering by a moving small particle. J. Appl. Phys. 39, 2993–2997 (1968)

    Google Scholar 

  26. A. Lakhtakia, V.V. Varadan, V.K. Varadan, Plane wave scattering response of a simply moving, electrically small, chiral sphere. J. Mod. Opt. 38, 1841–1847 (1991)

    MathSciNet  Google Scholar 

  27. A. Lakhtakia, Dyadic procedure for planewave scattering by simply moving, electrically small, bianisotropic spheres. Z. Naturforsch. 46a, 1033–1036 (1991)

    Google Scholar 

  28. B.L. Michielsen, G.C. Herman, A.T. de Hoop, Three-dimensional relativistic scattering of electromagnetic waves by and object in uniform translational motion. J. Math. Phys. 22, 2716–2722 (1981)

    Google Scholar 

  29. C.C. Handapangoda, M. Premaratne, P.N. Pathirana, Plane wave scattering by a spherical dielectric particle in motion: a relativistic extension of the Mie theory. Prog. Electromag. Res. 112, 349–379 (2011)

    Google Scholar 

  30. B.Y.-K. Hu, Kramers–Kronig in two lines. Am. J. Phys. 57, 821 (1998)

    Google Scholar 

  31. T.G. Garner, Time-domain electromagnetic scattering by objects moving uniformly at relativistic speeds, PhD thesis, The Pennsylvania State University, University Park (2018)

    Google Scholar 

  32. T.J. Garner, A. Lakhtakia, J.K. Breakall, C.F. Bohren, Time-domain electromagnetic scattering by a uniformly translating sphere. J. Opt. Soc. Am. A 34, 270–279 (2017)

    Google Scholar 

  33. T.J. Garner, A. Lakhtakia, J.K. Breakall, C.F. Bohren, Electromagnetic pulse scattering by a spacecraft nearing light speed. Appl. Opt. 56, 6206–6213 (2017)

    Google Scholar 

  34. T.J. Garner, A. Lakhtakia, J.K. Breakall, C.F. Bohren, Scattering characteristics of relativistically moving concentrically layered spheres. Phys. Lett. A 382, 362–366 (2017)

    Google Scholar 

  35. H. Radpour, A. Pourziad, K. Sarabandi, Four-dimensional relativistic scattering of electromagnetic waves from an arbitrary collection of moving lossy dielectric spheres. IET Microw. Antennas Propag. 15, 180–191 (2021)

    Google Scholar 

  36. H. Deng, G. Xiao, G. Liu, An efficient method for calculating the Doppler spectrum of an arbitrarily shaped object in uniform motion. IEEE Trans. Antennas Propag. 70, 10894–10902 (2022)

    Google Scholar 

  37. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, NY, USA, 1983)

    Google Scholar 

  38. D.S. Jones, On the scattering cross section of an obstacle. Philos. Mag. 46, 957–962 (1955)

    MathSciNet  Google Scholar 

  39. D.S. Saxon, Tensor scattering matrix for the electromagnetic field. Phys. Rev. 100, 1771–1755 (1955)

    MathSciNet  Google Scholar 

  40. T.J. Garner, A. Lakhtakia, J.K. Breakall, C.F. Bohren, Lorentz invariance of absorption and extinction cross sections of a uniformly moving object. Phys. Rev. A 96, 053839 (2017)

    Google Scholar 

  41. H.A. Lorentz, A. Einstein, H. Minkowski, H. Weyl, A. Sommerfeld, The Principle of Relativity (Dover, New York, NY, USA, 1952)

    Google Scholar 

  42. n.d. Mermin, It’s About Time: Understanding Einstein’s Relativity (Princeton University Press, Princeton, NJ, USA, 2005)

    Google Scholar 

  43. H.C. Chen, Theory of Electromagnetic Waves: A Coordinate-Free Approach (McGraw–Hill, New York, NY, USA, 1983)

    Google Scholar 

  44. N. Ashby, Relativity in the global positioning system. Living Rev. Relativity 6, 1 (2003)

    Google Scholar 

  45. J.D. Jackson, Classical Electrodynamics (Wiley, Hoboken, NJ, USA, 1999)

    Google Scholar 

  46. A. Papoulis, Signal Analysis (McGraw–Hill, New York, NY, USA, 1977)

    Google Scholar 

  47. E.O. Brigham, The Fast Fourier Transform and Its Application (Prentice–Hall, Englewood Cliffs, NJ, USA, 1988)

    Google Scholar 

  48. H.C. van de Hulst, Light Scattering by Small Particles (Dover, New York, NY, USA, 1981)

    Google Scholar 

  49. H.C. van de Hulst, On the attenuation of plane waves by obstacles of arbitrary size and form. Physica 15, 740–746 (1949)

    Google Scholar 

  50. A. Lakhtakia, Beltrami Fields in Chiral Media (World Scientific, Singapore, 1994)

    Google Scholar 

  51. Y. Guo, R.W. Farquhar, New Horizons mission design. Space Sci. Rev. 140, 49–74 (2007)

    Google Scholar 

  52. K.F. Long, Deep Space Propulsion: A Roadmap to Interstellar Flight. (Springer, New York, NY, USA, 2012)

    Google Scholar 

  53. H. Blatter, T. Greber, Tau Zero: in the cockpit of a Bussard ramjet. Am. J. Phys. 85, 915–920 (2017)

    Google Scholar 

  54. D.T. Michel, V.N. Goncharov, I.V. Igumenschev, R.Epstein, D.H. Froula, Demonstration of the improved rocket efficiency in direct-drive implosions using different ablator materials. Phys. Rev. Lett. 111, 245005 (2013)

    Google Scholar 

  55. I.F. Mirabel, L.F. Rodriguez, Sources of relativistic jets in the galaxy. Annu. Rev. Astron. Astrophys. 37, 409–443 (1999)

    Google Scholar 

  56. T. Hoang, A. Lazarian, R. Schlickeiser, On origin and destruction of relativistic dust and its implication for ultrahigh energy cosmic rays. Astrophys. J. 806, 255 (2015)

    Google Scholar 

Download references

Acknowledgements

Akhlesh Lakhtakia thanks the Charles Godfrey Binder Endowment at Penn State for ongoing support of his research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garner, T.J., Lakhtakia, A. (2024). Relativistic Pulse Scattering. In: Lakhtakia, A., Furse, C.M., Mackay, T.G. (eds) The Advancing World of Applied Electromagnetics. Springer, Cham. https://doi.org/10.1007/978-3-031-39824-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39824-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39823-0

  • Online ISBN: 978-3-031-39824-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics