Skip to main content

Prevention of Post-surgical Scarring

  • Chapter
  • First Online:
Oculoplastic, Lacrimal and Orbital Surgery

Abstract

Surgical scars can have significant physical and psychosocial effects on patients. Clinical trials have identified a limited number of interventions that are associated with proven reductions in scar size and improved appearance. Few pre-operative measures have proven benefits but may include managing patient stress levels, body warming, and possibly vitamin E application. Intra-operatively, good planning and prevention of blood loss and infection are essential; suture material and size may be less important. Although surgical denervation can hinder wound repair, perioperative botulinum neurotoxin injection around the surgical site is among the most useful interventions for improved scarring. Post-operatively, there is also good evidence to support the use of hypochlorous acid, silicone dressings and gels, and laser treatment. As the remodelling phase of healing can last for up to a year, some such interventions may need to continue well beyond the immediate perioperative period. Many other methods offer potential for post-operative benefit, including platelet-rich plasma, micro-needling, and various wound dressings and topical preparations. Further studies are required. In the future, approaches that redirect wound healing towards a more ‘foetal’ type of process might make truly scarless surgery a possibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown BC, McKenna SP, Siddhi K, et al. The hidden cost of skin scars: quality of life after skin scarring. J Plast Reconstr Aesthet Surg. 2008;61:1049–58.

    Article  CAS  PubMed  Google Scholar 

  2. Jourdan M, Madfes DC, Lima E, et al. Skin care management for medical and aesthetic procedures to prevent scarring. Clin Cosmet Investig Dermatol. 2019;12:799–804.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yarbus AL. Eye movements during the examination of complicated objects. Biofizika. 1961;6:52–6.

    Google Scholar 

  4. Lebonvallet N, Laverdet B, Misery L, et al. New insights into the roles of myofibroblasts and innervation during skin healing and innovative therapies to improve scar innervation. Exp Dermatol. 2018;27:950–8.

    Article  PubMed  Google Scholar 

  5. Shirakami E, Yamakawa S, Hayashida K. Strategies to prevent hypertrophic scar formation: a review of therapeutic interventions based on molecular evidence. Burns Trauma. 2020;8:tkz003.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Coger V, Million N, Rehbock C, et al. Tissue concentrations of zinc, iron, copper, and magnesium during the phases of full thickness wound healing in a rodent model. Biol Trace Elem Res. 2019;191:167–76.

    Article  CAS  PubMed  Google Scholar 

  7. Gauglitz GG, Korting HC, Pavicic T, et al. Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med. 2011;17:113–25.

    Article  CAS  PubMed  Google Scholar 

  8. Amadeu T, Braune A, Mandarim-de-Lacerda C, et al. Vascularization pattern in hypertrophic scars and keloids: a stereological analysis. Pathol Res Pract. 2003;199:469–73.

    Article  PubMed  Google Scholar 

  9. Bowden LG, Byrne HM, Maini PK, Moulton DE. A morphoelastic model for dermal wound closure. Biomech Model Mechanobiol. 2016;15:663–81.

    Article  CAS  PubMed  Google Scholar 

  10. Baumann LS, Spencer J. The effects of topical vitamin E on the cosmetic appearance of scars. Dermatol Surg. 1999;25:311–5.

    Article  CAS  PubMed  Google Scholar 

  11. Zampieri N, Zuin V, Burro R, et al. A prospective study in children: pre- and post-surgery use of vitamin E in surgical incisions. J Plast Reconstr Aesthet Surg. 2010;63:1474–8.

    Article  PubMed  Google Scholar 

  12. Tanaydin V, Conings J, Malyar M, et al. The role of topical vitamin E in scar management: a systematic review. Aesthet Surg J. 2016;36:959–65.

    Article  PubMed  Google Scholar 

  13. Geers NC, Zegel M, Huybregts JGJ, Niessen FB. The influence of preoperative interventions on postoperative surgical wound healing in patients without risk factors: a systematic review. Aesthet Surg J. 2018;38:1237–49.

    Article  PubMed  Google Scholar 

  14. Rao RM, Nagendra HR, Raghuram N, et al. Influence of yoga on postoperative outcomes and wound healing in early operable breast cancer patients undergoing surgery. Int J Yoga. 2008;1:33–41.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Broadbent E, Kahokehr A, Booth RJ, et al. A brief relaxation intervention reduces stress and improves surgical wound healing response: a randomised trial. Brain Behav Immun. 2012;26:212–7.

    Article  PubMed  Google Scholar 

  16. Ginandes C, Brooks P, Sando W, et al. Can medical hypnosis accelerate post-surgical wound healing? Results of a clinical trial. Am J Clin Hypn. 2003;45:333–51.

    Article  PubMed  Google Scholar 

  17. Pereira L, Figueiredo-Braga M, Carvalho IP. Preoperative anxiety in ambulatory surgery: the impact of an empathic patient-centered approach on psychological and clinical outcomes. Patient Educ Couns. 2016;99:733–8.

    Article  PubMed  Google Scholar 

  18. Melling AC, Ali B, Scott EM, Leaper DJ. Effects of preoperative warming on the incidence of wound infection after clean surgery: a randomised controlled trial. Lancet. 2001;358:876–80.

    Article  CAS  PubMed  Google Scholar 

  19. Künzli BM, Liebl F, Nuhn P, et al. Impact of preoperative local water-filtered infrared A irradiation on postoperative wound healing: a randomized patient- and observer-blinded controlled clinical trial. Ann Surg. 2013;258:887–94.

    Article  PubMed  Google Scholar 

  20. Lee Peng G, Kerolus JL. Management of surgical scars. Facial Plast Surg Clin North Am. 2019;27:513–7.

    Article  PubMed  Google Scholar 

  21. Kelly AP. Update on the management of keloids. Semin Cutan Med Surg. 2009;28:71–6.

    Article  CAS  PubMed  Google Scholar 

  22. Murthy R, Roos JCP, Goldberg RA. Periocular hyaluronic acid fillers: applications, implications, complications. Curr Opin Ophthalmol. 2019;30:395–400.

    Article  PubMed  Google Scholar 

  23. Gill JF, Yu SS, Neuhaus IM. Tobacco smoking and dermatologic surgery. J Am Acad Dermatol. 2013;68:167–72.

    Article  PubMed  Google Scholar 

  24. Commander SJ, Chamata E, Cox J, et al. Update on postsurgical scar management. Semin Plast Surg. 2016;30:122–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huang C, Ogawa R. The link between hypertension and pathological scarring: does hypertension cause or promote keloid and hypertrophic scar pathogenesis? Wound Repair Regen. 2014;22:462–6.

    Article  CAS  PubMed  Google Scholar 

  26. Ogawa R, Akaishi S. Endothelial dysfunction may play a key role in keloid and hypertrophic scar pathogenesis—keloids and hypertrophic scars may be vascular disorders. Med Hypotheses. 2016;96:51–60.

    Article  CAS  PubMed  Google Scholar 

  27. Waisbren E, Rosen H, Bader AM, et al. Percent body fat and prediction of surgical site infection. J Am Coll Surg. 2010;210:381–9.

    Article  PubMed  Google Scholar 

  28. Long M, Cai L, Li W, et al. DPP-4 inhibitors improve diabetic wound healing via direct and indirect promotion of epithelial-mesenchymal transition and reduction of scarring. Diabetes. 2018;67:518–31.

    Article  CAS  PubMed  Google Scholar 

  29. Suwanai H, Watanabe R, Sato M, et al. DPP-4 inhibitor reduces the risk of developing hypertrophic scars and keloids following median sternotomy in diabetic patients: a nationwide retrospective cohort study using the National Database of Health Insurance Claims of Japan. Plast Reconstr Surg. 2020;146:83–9.

    Google Scholar 

  30. Wagner J, Lock JF, Kastner C, et al. Perioperative management of anticoagulant therapy. Innov Surg Sci. 2019;4:144–51.

    PubMed  PubMed Central  Google Scholar 

  31. Hirsch GE, Viecili PRN, de Almeida AS, et al. Natural products with antiplatelet action. Curr Pharm Des. 2017;23:1228–46.

    Article  CAS  PubMed  Google Scholar 

  32. Di Minno A, Frigerio B, Spadarella G, et al. Old and new oral anticoagulants: food, herbal medicines and drug interactions. Blood Rev. 2017;31:193–203.

    Article  PubMed  Google Scholar 

  33. Malhotra U, Hasday M, Romanos GE, Javed F. Assessment of routine diet (garlic consumption) as a pre- and postoperative protocol in oral and maxillofacial surgical interventions: an evidence-based literature review. Nutr Health. 2020;26:135–9.

    Article  PubMed  Google Scholar 

  34. Palmieri B, Vadalà M, Laurino C. Nutrition in wound healing: investigation of the molecular mechanisms, a narrative review. J Wound Care. 2019;28:683–93.

    Article  PubMed  Google Scholar 

  35. Vaxman F, Olender S, Lambert A, et al. Effect of pantothenic acid and ascorbic acid supplementation on human skin wound healing process. A double-blind, prospective and randomized trial. Eur Surg Res. 1995;27:158–66.

    Article  CAS  PubMed  Google Scholar 

  36. Vaxman F, Olender S, Lambert A, et al. Can the wound healing process be improved by vitamin supplementation? Experimental study on humans. Eur Surg Res. 1996;28:306–14.

    Article  CAS  PubMed  Google Scholar 

  37. Akintoye E, Sethi P, Harris WS. Fish oil and perioperative bleeding. Circ Cardiovasc Qual Outcomes. 2018;11:e004584.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Razzaghi R, Pidar F, Momen-Heravi M, et al. Magnesium supplementation and the effects on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. Biol Trace Elem Res. 2018;181:207–15.

    Article  CAS  PubMed  Google Scholar 

  39. Momen-Heravi M, Barahimi E, Razzaghi R, et al. The effects of zinc supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. Wound Repair Regen. 2017;25:512–20.

    Article  PubMed  Google Scholar 

  40. Soleimani Z, Hashemdokht F, Bahmani F, et al. Clinical and metabolic response to flaxseed oil omega-3 fatty acids supplementation in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. J Diabetes Complicat. 2017;31:1394–400.

    Article  Google Scholar 

  41. Afzali H, Jafari Kashi AH, Momen-Heravi M, et al. The effects of magnesium and vitamin E co-supplementation on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. Wound Repair Regen. 2019;27:277–84.

    Article  PubMed  Google Scholar 

  42. Mohseni S, Bayani M, Bahmani F, et al. The beneficial effects of probiotic administration on wound healing and metabolic status in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. Diabetes Metab Res Rev. 2018;34:e2970.

    Article  Google Scholar 

  43. Chopra K, Calva D, Sosin M, et al. A comprehensive examination of topographic thickness of skin in the human face. Aesthet Surg J. 2015;35:1007–13.

    Article  PubMed  Google Scholar 

  44. Sukeik M, Alshryda S, Powell J, Haddad FS. The effect of tranexamic acid on wound complications in primary total hip arthroplasty: a meta-analysis. Surgeon. 2020;18:53–61.

    Article  PubMed  Google Scholar 

  45. Emmerson E. Efficient healing takes some nerve: electrical stimulation enhances innervation in cutaneous human wounds. J Invest Dermatol. 2017;137:543–5.

    Article  CAS  PubMed  Google Scholar 

  46. Parfejevs V, Debbache J, Shakhova O, et al. Injury-activated glial cells promote wound healing of the adult skin in mice. Nat Commun. 2018;9:236.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zheng Z, Wan Y, Liu Y, et al. Sympathetic denervation accelerates wound contraction but inhibits reepithelialization and pericyte proliferation in diabetic mice. J Diabetes Res. 2017;2017:7614685.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sebastian A, Volk SW, Halai P, et al. Enhanced neurogenic biomarker expression and reinnervation in human acute skin wounds treated by electrical stimulation. J Invest Dermatol. 2017;137:737–47.

    Article  CAS  PubMed  Google Scholar 

  49. Moody BR, McCarthy JE, Linder J, Hruza GJ. Enhanced cosmetic outcome with running horizontal mattress sutures. Dermatol Surg. 2005;31:1313–6.

    Article  CAS  PubMed  Google Scholar 

  50. Khansa I, Harrison B, Janis JE. Evidence-based scar management: how to improve results with technique and technology. Plast Reconstr Surg. 2016;138:165S–78S.

    Google Scholar 

  51. Liu KY, Silvestri B, Marquez J, Huston TL. Secondary intention healing after Mohs surgical excision as an alternative to surgical repair: evaluation of wound characteristics and esthetic outcomes. Ann Plast Surg. 2020;85:S28–32.

    Article  CAS  PubMed  Google Scholar 

  52. Eisen DB, Zhuang AR, Hasan A, et al. 5-0 polypropylene versus 5-0 fast absorbing plain gut for cutaneous wound closure: a randomized evaluator blind trial. Arch Dermatol Res. 2020;312:179–85.

    Article  CAS  PubMed  Google Scholar 

  53. Moran B, Humphrey S, Seal A, et al. Photographic assessment of post-surgical facial scars epidermally sutured with rapidly absorbable polyglactin 910 or nylon: a randomized clinical trial. J Am Acad Dermatol. 2020;83:1395–9.

    Article  CAS  PubMed  Google Scholar 

  54. Gillanders SL, Anderson S, Mellon L, Heskin L. A systematic review and meta-analysis: do absorbable or non-absorbable suture materials differ in cosmetic outcomes in patients requiring primary closure of facial wounds? J Plast Reconstr Aesthet Surg. 2018;71:1682–92.

    Article  PubMed  Google Scholar 

  55. Wade RG, Wormald JC, Figus A. Absorbable versus non-absorbable sutures for skin closure after carpal tunnel decompression surgery. Cochrane Database Syst Rev. 2018;2:CD011757.

    PubMed  Google Scholar 

  56. Motosko CC, Zakhem GA, Saadeh PB, Hazen A. The implications of barbed sutures on scar aesthetics: a systematic review. Plast Reconstr Surg. 2018;142:337–43.

    Article  CAS  PubMed  Google Scholar 

  57. Pourang A, Crispin MK, Clark AK, et al. Use of 5-0 fast absorbing gut versus 6-0 fast absorbing gut during cutaneous wound closure on the head and neck: a randomized evaluator-blinded split-wound comparative effectiveness trial. J Am Acad Dermatol. 2019;81:213–8.

    Article  PubMed  Google Scholar 

  58. Sklar LR, Pourang A, Armstrong AW, et al. Comparison of running cutaneous suture spacing during linear wound closures and the effect on wound cosmesis of the face and neck: a randomized clinical trial. JAMA Dermatol. 2019;155:321–6.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jenkins LE, Davis LS. Comprehensive review of tissue adhesives. Dermatol Surg. 2018;44:1367–72.

    Article  CAS  PubMed  Google Scholar 

  60. Dumville JC, Coulthard P, Worthington HV, et al. Tissue adhesives for closure of surgical incisions. Cochrane Database Syst Rev. 2014;11:CD004287.

    Google Scholar 

  61. Zhuang AR, Beroukhim K, Armstrong AW, et al. Comparison of 2-octylcyanoacrylate versus 5-0 fast-absorbing gut during linear wound closures and the effect on wound cosmesis. Dermatol Surg. 2020;46:628–34.

    Article  CAS  PubMed  Google Scholar 

  62. Ben Safta Y, Maatouk M, Bouzidi MT, et al. A randomised clinical trial to compare octyl cyanoacrylate with absorbable monofilament sutures for the closure of laparoscopic cholecystectomy port incisions. Int Wound J. 2020;17:449–54.

    Article  PubMed  Google Scholar 

  63. Jain R, Wairkar S. Recent developments and clinical applications of surgical glues: an overview. Int J Biol Macromol. 2019;137:95–106.

    Article  CAS  PubMed  Google Scholar 

  64. Bao Z, Gao M, Sun Y, et al. The recent progress of tissue adhesives in design strategies, adhesive mechanism and applications. Mater Sci Eng C Mater Biol Appl. 2020;111:110796.

    Article  CAS  PubMed  Google Scholar 

  65. Pirazzini M, Rossetto O, Eleopra R, Montecucco C. Botulinum neurotoxins: biology, pharmacology, and toxicology. Pharmacol Rev. 2007;69:200–35.

    Article  Google Scholar 

  66. Wang Y, Wang J, Zhang J, et al. Effectiveness and safety of botulinum toxin type A injection for scar prevention: a systematic review and meta-analysis. Aesthet Plast Surg. 2019;43:1241–9.

    Article  Google Scholar 

  67. Xiao Z, Zhang F, Lin W, et al. Effect of botulinum toxin type a on transforming growth factor beta1 in fibroblasts derived from hypertrophic scar: a preliminary report. Aesthet Plast Surg. 2010;34:424–7.

    Article  Google Scholar 

  68. Shuo L, Ting Y, KeLun W. Efficacy and possible mechanisms of botulinum toxin treatment of oily skin. J Cosmet Dermatol. 2019;18:451–7.

    Article  PubMed  Google Scholar 

  69. Guo X, Song G, Zhang D, Jin X. Efficacy of botulinum toxin type A in improving scar quality and wound healing: a systematic review and meta-analysis of randomized controlled trials. Aesthet Surg J. 2020;40:NP273–85.

    Article  PubMed  Google Scholar 

  70. Yang W, Li G. The safety and efficacy of botulinum toxin type A injection for postoperative scar prevention: a systematic review and meta-analysis. J Cosmet Dermatol. 2020;19:799–808.

    Article  PubMed  Google Scholar 

  71. Ziade M, Domergue S, Batifol D, et al. Use of botulinum toxin type A to improve treatment of facial wounds: a prospective randomised study. J Plast Reconstr Aesthet Surg. 2013;66:209–14.

    Article  PubMed  Google Scholar 

  72. Kruse CR, Singh M, Targosinski S, et al. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: in vitro and in vivo study. Wound Repair Regen. 2017;25:260–9.

    Article  PubMed  Google Scholar 

  73. Nuutila K, Yang L, Broomhead M, et al. Novel negative pressure wound therapy device without foam or gauze is effective at −50 mmHg. Wound Repair Regen. 2019;27:162–9.

    Article  PubMed  Google Scholar 

  74. Junker JP, Kamel RA, Caterson EJ, Eriksson E. Clinical impact upon wound healing and inflammation in moist, wet, and dry environments. Adv Wound Care (New Rochelle). 2013;2:348–56.

    Article  PubMed  Google Scholar 

  75. Mir M, Ali MN, Barakullah A, et al. Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater. 2018;7:1–21.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Barnes LA, Marshall CD, Leavitt T, et al. Mechanical forces in cutaneous wound healing: emerging therapies to minimize scar formation. Adv Wound Care. 2018;7:47–56.

    Article  Google Scholar 

  77. Kuhn MA, Moffit MR, Smith PD, et al. Silicone sheeting decreases fibroblast activity and downregulates TGFbeta2 in hypertrophic scar model. Int J Surg Invest. 2001;2:467–74.

    CAS  Google Scholar 

  78. Choi J, Lee EH, Park SW, Chang H. Regulation of transforming growth factor β1, platelet-derived growth factor, and basic fibroblast growth factor by silicone gel sheeting in early-stage scarring. Arch Plast Surg. 2015;42:20–7.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wang F, Li X, Wang X, Jiang X. Efficacy of topical silicone gel in scar management: a systematic review and meta-analysis of randomised controlled trials. Int Wound J. 2020;17:765–73.

    Article  PubMed  PubMed Central  Google Scholar 

  80. O’Brien L, Jones DJ. Silicone gel sheeting for preventing and treating hypertrophic and keloid scars. Cochrane Database Syst Rev. 2013;9:CD003826.

    Google Scholar 

  81. Lim AF, Weintraub J, Kaplan EN. The embrace device significantly decreases scarring following scar revision surgery in a randomized controlled trial. Plast Reconstr Surg. 2014;133:398–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Longaker MT, Rohrich RJ, Greenberg L, et al. A randomized controlled trial of the embrace advanced scar therapy device to reduce incisional scar formation. Plast Reconstr Surg. 2014;134:536–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Perez JL, Rohrich RJ. Optimizing your post-surgical scars: a systematic review on best practices in preventative scar management. Plast Reconstr Surg. 2017;140:782e–93e.

    Google Scholar 

  84. Rosengren H, Askew DA, Heal C, et al. Does taping torso scars following dermatologic surgery improve scar appearance? Dermatol Pract Concept. 2013;3:75–83.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Atkinson JA, McKenna KT, Barnett AG, et al. A randomized, controlled trial to determine the efficacy of paper tape in preventing hypertrophic scar formation in surgical incisions that traverse Langer’s skin tension lines. Plast Reconstr Surg. 2005;116:1648–56.

    Article  CAS  PubMed  Google Scholar 

  86. Liu B, Liu Y, Wang L, et al. The effects of pressure intervention on wound healing and scar formation in a Bama minipig model. Burns. 2019;45:413–22.

    Article  PubMed  Google Scholar 

  87. Schmitz L, Hessam S, Scholl L. Wound care with a porcine extracellular matrix after surgical treatment of rhinophyma. J Cutan Med Surg. 2020;24:253–8.

    Article  CAS  PubMed  Google Scholar 

  88. Jafari A, Amirsadeghi A, Hassanajili S, Azarpira N. Bioactive antibacterial bilayer PCL/gelatin nanofibrous scaffold promotes full-thickness wound healing. Int J Pharm. 2020;583:119413.

    Article  CAS  PubMed  Google Scholar 

  89. Trookman NS, Rizer RL, Weber T. Treatment of minor wounds from dermatologic procedures: a comparison of three topical wound care ointments using a laser wound model. J Am Acad Dermatol. 2011;64:S8–15.

    Google Scholar 

  90. Lee N, Wong CK, Chan MCW, et al. Anti-inflammatory effects of adjunctive macrolide treatment in adults hospitalized with influenza: a randomized controlled trial. Antivir Res. 2017;144:48–56.

    Article  CAS  PubMed  Google Scholar 

  91. Moore AL, desJardins-Park HE, Duoto BA. Doxycycline reduces scar thickness and improves collagen architecture. Ann Surg. 2020;272:183–93.

    Article  PubMed  Google Scholar 

  92. Gold MH, Andriessen A, Bhatia AC, et al. Topical stabilized hypochlorous acid: the future gold standard for wound care and scar management in dermatologic and plastic surgery procedures. J Cosmet Dermatol. 2020;19:270–7.

    Article  PubMed  Google Scholar 

  93. Steinsapir KD, Woodward JA. Chlorhexidine keratitis: safety of chlorhexidine as a facial antiseptic. Dermatol Surg. 2017;43:1–6.

    Article  CAS  PubMed  Google Scholar 

  94. Kong CG, Kim GH, Kim DW, In Y. The effect of topical scar treatment on postoperative scar pain and pruritus after total knee arthroplasty. Arch Orthop Trauma Surg. 2014;134:555–9.

    Article  PubMed  Google Scholar 

  95. Shirazi M, Mohammadi AA, Shamohammadi I, et al. Efficacy of silicone gel in reducing scar formation after hypospadias repair: a randomized placebo-controlled trial. Res Rep Urol. 2019;11:291–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Ruan QZ, Chen AD, Tran BNN, et al. Integrative medicine in plastic surgery: a systematic review of our literature. Ann Plast Surg. 2019;82:459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Song T, Kim KH, Lee KW. Randomised comparison of silicone gel and onion extract gel for post-surgical scars. J Obstet Gynaecol. 2018;38:702–7.

    Article  PubMed  Google Scholar 

  98. Malhotra R, Ziahosseini K, Poitelea C, et al. Effect of manuka honey on eyelid wound healing: a randomized controlled trial. Ophthalmic Plast Reconstr Surg. 2017;33:268–72.

    Article  PubMed  Google Scholar 

  99. Kosmadaki M, Katsambas A. Topical treatments for acne. Clin Dermatol. 2017;35:173–8.

    Article  PubMed  Google Scholar 

  100. Leyden J, Stein-Gold L, Weiss J. Why topical retinoids are mainstay of therapy for acne. Dermatol Ther (Heidelb). 2017;7:293–304.

    Article  PubMed  Google Scholar 

  101. Kwon SY, Park SD, Park K. Comparative effect of topical silicone gel and topical tretinoin cream for the prevention of hypertrophic scar and keloid formation and the improvement of scars. J Eur Acad Dermatol Venereol. 2014;28:1025–33.

    Article  CAS  PubMed  Google Scholar 

  102. Totonchi A, Guyuron B. A randomized, controlled comparison between arnica and steroids in the management of postrhinoplasty ecchymosis and edema. Plast Reconstr Surg. 2007;120:271–4.

    Article  CAS  PubMed  Google Scholar 

  103. Simsek G, Sari E, Kilic R, Muluk NB. Topical application of arnica and mucopolysaccharide polysulfate attenuates periorbital edema and ecchymosis in open rhinoplasty: a randomized controlled clinical study. Plast Reconstr Surg. 2016;137:530e–5e.

    Article  CAS  PubMed  Google Scholar 

  104. Lueangarun S, Srituravanit A, Tempark T. Efficacy and safety of moisturizer containing 5% panthenol, madecassoside, and copper-zinc-manganese versus 0.02% triamcinolone acetonide cream in decreasing adverse reaction and downtime after ablative fractional carbon dioxide laser resurfacing: a split-face, double-blinded, randomized, controlled trial. J Cosmet Dermatol. 2019;18:1751–7.

    Article  PubMed  Google Scholar 

  105. Loo YL, Goh BLK, Jeffery S. An overview of the use of bromelain-based enzymatic debridement (Nexobrid®) in deep partial and full thickness burns: appraising the evidence. J Burn Care Res. 2018;39:932–8.

    Article  PubMed  Google Scholar 

  106. Kim J, Kim J, Lee YI, et al. Effect of a topical antioxidant serum containing vitamin C, vitamin E, and ferulic acid after Q-switched 1064-nm Nd:YAG laser for treatment of environment-induced skin pigmentation. J Cosmet Dermatol. 2020;19:2576–82.

    Google Scholar 

  107. Wan Ishak WM, Katas H, Yuen NP, et al. Topical application of omega-3-, omega-6-, and omega-9-rich oil emulsions for cutaneous wound healing in rats. Drug Deliv Transl Res. 2019;9:418–33.

    Article  PubMed  Google Scholar 

  108. Ang LF, Darwis Y, Koh RY, et al. Wound healing property of curcuminoids as a microcapsule-incorporated cream. Pharmaceutics. 2019;11:205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Koga AY, Felix JC, Silvestre RGM, et al. Evaluation of wound healing effect of alginate film containing aloe vera gel and cross-linked with zinc chloride. Acta Cir Bras. 2020;35:e202000507.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Han B, Fang WH, Zhao S, et al. Zinc sulfide nanoparticles improve skin regeneration. Nanomedicine. 2020;29:102263.

    Google Scholar 

  111. Betarbet U, Blalock TW. Keloids: a review of etiology, prevention, and treatment. J Clin Aesthet Dermatol. 2020;13:33–43.

    PubMed  PubMed Central  Google Scholar 

  112. Meseci E, Kayatas S, Api M, et al. Comparison of the effectiveness of topical silicone gel and corticosteroid cream on the Pfannenstiel scar prevention—a randomized controlled trial. Ginekol Pol. 2017;88:591–8.

    Article  PubMed  Google Scholar 

  113. Singla A, Qureshi R, Chen DQ, et al. Risk of surgical site infection and mortality following lumbar fusion surgery in patients with chronic steroid usage and chronic methicillin-resistant Staphylococcus aureus infection. Spine. 2019;44:E408–13.

    Article  PubMed  Google Scholar 

  114. Haddad AL, Matos LF, Brunstein F, et al. A clinical, prospective, randomized, double-blind trial comparing skin whitening complex with hydroquinone vs. placebo in the treatment of melasma. Int J Dermatol. 2003;42:153–6.

    Article  CAS  PubMed  Google Scholar 

  115. Yin NC, McMichael AJ. Acne in patients with skin of color: practical management. Am J Clin Dermatol. 2014;15:7–16.

    Article  PubMed  Google Scholar 

  116. Pariser D, Spencer J, Berman B, et al. Using a hydroquinone/tretinoin-based skin care system before and after electrodesiccation and curettage of superficial truncal basal cell carcinoma: a multicenter, randomized, investigator-blind, controlled study of short-term healing. J Clin Aesthet Dermatol. 2009;2:38–43.

    Google Scholar 

  117. Reinholz M, Heppt M, Tietze JK, et al. Photoletter to the Editor: Topical 0.5% brimonidine gel to camouflage redness of immature scars. J Dermatol Case Rep. 2015;9:87–8.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Bandral MR, Padgavankar PH, Japatti SR, et al. Clinical evaluation of microneedling therapy in the management of facial scar: a prospective randomized study. J Maxillofac Oral Surg. 2019;18:572–8.

    Article  PubMed  Google Scholar 

  119. Alster TS, Li MK. Microneedling of scars: a large prospective study with long-term follow-up. Plast Reconstr Surg. 2020;145:358–64.

    Article  CAS  PubMed  Google Scholar 

  120. Casabona GR, Giacomo TB. Improving the appearance of surgical facial scars with incobotulinumtoxina and microneedling. J Drugs Dermatol. 2020;19:611–5.

    Article  PubMed  Google Scholar 

  121. Kent RA, Shupp J, Fernandez S, et al. Effectiveness of early laser treatment in surgical scar minimization: a systematic review and meta-analysis. Dermatol Surg. 2020;46:402–10.

    Article  CAS  PubMed  Google Scholar 

  122. Karmisholt KE, Haerskjold A, Karlsmark T, et al. Early laser intervention to reduce scar formation—a systematic review. J Eur Acad Dermatol Venereol. 2018;32:1099–110.

    Article  CAS  PubMed  Google Scholar 

  123. Behrouz-Pirnia A, Liu H, Peternel S, et al. Early laser intervention to reduce scar formation in wound healing by primary intention: a systematic review. J Plast Reconstr Aesthet Surg. 2020;73:528–36.

    Article  PubMed  Google Scholar 

  124. Andia I. Platelet rich plasma therapies: a great potential to be harnessed. Muscles Ligaments Tendons J. 2014;4:1–2.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Rivers JK. Platelet-rich plasma: should we wait for the verdict? J Cutan Med Surg. 2014;18:147–8.

    Article  PubMed  Google Scholar 

  126. Hausauer AK, Humphrey S. The physician’s guide to platelet-rich plasma in dermatologic surgery part II: clinical evidence. Dermatol Surg. 2020;46:447–56.

    Article  CAS  PubMed  Google Scholar 

  127. Fang Z, Yang X, Wu G, et al. The use of autologous platelet-rich plasma gel increases wound healing and reduces scar development in split-thickness skin graft donor sites. J Plast Surg Hand Surg. 2019;53:356–60.

    Article  PubMed  Google Scholar 

  128. Refahee SM, Aboulhassan MA, Abdel Aziz O, et al. Is PRP effective in reducing the scar width of primary cleft lip repair? A randomized controlled clinical study. Cleft Palate Craniofac J. 2020;57:581–8.

    Article  PubMed  Google Scholar 

  129. Ofstead CL, Buro BL, Hopkins KM, Eiland JE. The impact of continuous electrical microcurrent on acute and hard-to-heal wounds: a systematic review. J Wound Care. 2020;29:S6–15.

    Google Scholar 

  130. Shin TM, Bordeaux JS. The role of massage in scar management: a literature review. Dermatol Surg. 2012;38:414–23.

    Article  CAS  PubMed  Google Scholar 

  131. Erickson JR, Echeverri K. Learning from regeneration research organisms: the circuitous road to scar free wound healing. Dev Biol. 2018;433:144–54.

    Article  CAS  PubMed  Google Scholar 

  132. Ud-Din S, Volk SW, Bayat A. Regenerative healing, scar-free healing and scar formation across the species: current concepts and future perspectives. Exp Dermatol. 2014;23:615–9.

    Article  PubMed  Google Scholar 

  133. Walmsley GG, Maan ZN, Wong VW, et al. Scarless wound healing: chasing the holy grail. Plast Reconstr Surg. 2015;135:907–17.

    Article  CAS  PubMed  Google Scholar 

  134. Li H, Roos JC, Rose GE, et al. Eyelid and sternum fibroblasts differ in their contraction potential and responses to inflammatory cytokines. Plast Reconstr Surg Glob Open. 2015;3:e448.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Han X, Deng Y, Yu J, et al. Acarbose accelerates wound healing via Akt/eNOS signaling in db/db mice. Oxidative Med Cell Longev. 2017;2017:7809581.

    Article  Google Scholar 

  136. Tang ZM, Zhai XX, Ding JC. Expression of mTOR/70S6K signaling pathway in pathological scar fibroblasts and the effects of resveratrol intervention. Mol Med Rep. 2017;15:2546–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wells AR, Leung KP. Pirfenidone attenuates the profibrotic contractile phenotype of differentiated human dermal myofibroblasts. Biochem Biophys Res Commun. 2020;521:646–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachna Murthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murthy, R., Ryder, T., Roos, J.C.P. (2024). Prevention of Post-surgical Scarring. In: Quaranta Leoni, F.M., Verity, D.H., Paridaens, D. (eds) Oculoplastic, Lacrimal and Orbital Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-39634-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39634-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39633-5

  • Online ISBN: 978-3-031-39634-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics