Skip to main content

Development of a Robotic Rat Hindlimb Model

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2023)

Abstract

This paper discusses the design decisions, process, and results for a set of robotic rat hindlimbs scaled up to 2.5 times the size of the rat. The design is inspired by a previous model from within our lab, but includes a variety of improvements to further the utility and biological accuracy of the model. The robot is comprised of two legs with four motors each to actuate sagittal rotations of the hip, knee, and ankle joints as well as an internal hip rotation. The motor’s torque, inertial, viscous, and stiffness properties are characterized for dynamic scaling to be properly implemented in the future control scheme. With direct position commands, the robot’s joint movements are able to reflect those of the rat, proving its validity as a test bed for the implementation of future neural control schemes.

This work was supported by NSF RI 1704436 and also DFG FI 410/16-1 and NSF DBI 2015317 as part of the NSF/CIHR/DFG/FRQ/UKRI-MRC Next Generation Networks for Neuroscience Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrada, E., et al.: Limb, joint and pelvic kinematic control in the quail coping with steps upwards and downwards. Sci. Rep. 12(1), 15901 (2022). https://doi.org/10.1038/s41598-022-20247-y

    Article  Google Scholar 

  2. Bledt, G., Powell, M.J., Katz, B., Di Carlo, J., Wensing, P.M., Kim, S.: MIT cheetah 3: design and control of a robust, dynamic quadruped robot. Other repository, January 2019. Accessed 17 Aug 2020. ISBN: 9781538680940. Publisher: Institute of Electrical and Electronics Engineers (IEEE)

    Google Scholar 

  3. Corrigan, S.: Introduction to the Controller Area Network (CAN), May 2016. https://www.ti.com/lit/pdf/sloa101

  4. Deng, K., et al.: Biomechanical and sensory feedback regularize the behavior of different locomotor central pattern generators. Biomimetics 7(4), 226 (2022). https://doi.org/10.3390/biomimetics7040226

    Article  Google Scholar 

  5. Deng, K., et al.: Neuromechanical model of rat hindlimb walking with two-layer CPGs. Biomimetics 4(1), 21 (2019). https://doi.org/10.3390/biomimetics4010021

    Article  Google Scholar 

  6. Dienes, J., Hicks, B., Slater, C., Janson, K.D., Christ, G.J., Russell, S.D.: Comprehensive dynamic and kinematic analysis of the rodent hindlimb during over ground walking. Sci. Rep. 12(1), 19725 (2022). https://doi.org/10.1038/s41598-022-20288-3

    Article  Google Scholar 

  7. Donnelley-Power, E.: Design of a rat hindlimb robot and neuromechanical controller. Master’s thesis, Case Western Reserve University, Cleveland, Ohio, January 2022

    Google Scholar 

  8. Goldsmith, C., Szczecinski, N., Quinn, R.: Drosophibot: a fruit fly inspired bio-robot. In: Martinez-Hernandez, U., et al. (eds.) Living Machines 2019. LNCS (LNAI), vol. 11556, pp. 146–157. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24741-6_13

    Chapter  Google Scholar 

  9. Hooper, S.L., et al.: Neural control of unloaded leg posture and of leg swing in stick insect, cockroach, and mouse differs from that in larger animals. J. Neurosci. 29(13), 4109–4119 (2009). https://doi.org/10.1523/JNEUROSCI.5510-08.2009

    Article  Google Scholar 

  10. Hunt, A., Szczecinski, N., Quinn, R.: Development and training of a neural controller for hind leg walking in a dog robot. Front. Neurorobot. 11, 18 (2017). https://doi.org/10.3389/fnbot.2017.00018

    Article  Google Scholar 

  11. Hunt, A.J., Szczecinski, N.S., Andrada, E., Fischer, M., Quinn, R.D.: Using animal data and neural dynamics to reverse engineer a neuromechanical rat model. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) LIVINGMACHINES 2015. LNCS (LNAI), vol. 9222, pp. 211–222. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22979-9_21

    Chapter  Google Scholar 

  12. Johnson, W.L., Jindrich, D.L., Roy, R.R., Reggie Edgerton, V.: A three-dimensional model of the rat hindlimb: musculoskeletal geometry and muscle moment arms. J. Biomech. 41(3), 610–619 (2008). https://doi.org/10.1016/j.jbiomech.2007.10.004

    Article  Google Scholar 

  13. Kau, N.: DJI C610 + M2006 interface library, November 2022. Original-date: 20 September 2020

    Google Scholar 

  14. Rybak, I.A., Shevtsova, N.A., Lafreniere-Roula, M., McCrea, D.A.: Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion: modelling spinal circuitry involved in locomotor pattern generation. J. Physiol. 577(2), 617–639 (2006). https://doi.org/10.1113/jphysiol.2006.118703

    Article  Google Scholar 

  15. Shi, Q., et al.: Development of a small-sized quadruped robotic rat capable of multimodal motions. IEEE Trans. Robot. 38(5), 3027–3043 (2022). https://doi.org/10.1109/TRO.2022.3159188. conference Name: IEEE Transactions on Robotics

    Article  MathSciNet  Google Scholar 

  16. Song, J., et al.: Multiple rhythm-generating circuits act in tandem with pacemaker properties to control the start and speed of locomotion. Neuron 105(6), 1048–1061 (2020). https://doi.org/10.1016/j.neuron.2019.12.030

    Article  Google Scholar 

  17. Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: A functional subnetwork approach to designing synthetic nervous systems that control legged robot locomotion. Front. Neurorobot. 11, 37 (2017). https://doi.org/10.3389/fnbot.2017.00037

    Article  Google Scholar 

  18. Varejão, A.S.P., et al.: Motion of the foot and ankle during the stance phase in rats: rat ankle angle during stance. Muscle Nerve 26(5), 630–635 (2002). https://doi.org/10.1002/mus.10242

    Article  Google Scholar 

  19. Young, F., Rode, C., Hunt, A., Quinn, R.: Analyzing moment arm profiles in a full-muscle rat hindlimb model. Biomimetics 4(1), 10 (2019). https://doi.org/10.3390/biomimetics4010010

    Article  Google Scholar 

  20. Young, F.R., Chiel, H.J., Tresch, M.C., Heckman, C.J., Hunt, A.J., Quinn, R.D.: Analyzing modeled torque profiles to understand scale-dependent active muscle responses in the hip joint. Biomimetics 7(1), 17 (2022). https://doi.org/10.3390/biomimetics7010017

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Emmett Donnelly-Power for his help in understanding the design philosophy behind his previous rat hindlimb robot. We would also like to thank Fletcher Young for providing data used for the scaling analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan Aronhalt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aronhalt, E. et al. (2023). Development of a Robotic Rat Hindlimb Model. In: Meder, F., Hunt, A., Margheri, L., Mura, A., Mazzolai, B. (eds) Biomimetic and Biohybrid Systems. Living Machines 2023. Lecture Notes in Computer Science(), vol 14158. Springer, Cham. https://doi.org/10.1007/978-3-031-39504-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39504-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39503-1

  • Online ISBN: 978-3-031-39504-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics