Skip to main content

Biarticular Muscles Improve the Stability of a Neuromechanical Model of the Rat Hindlimb

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14158))

Included in the following conference series:

  • 482 Accesses

Abstract

This study introduces a novel neuromechanical model of rat hindlimbs with biarticular muscles producing walking movements without ground contact. The design of the control network is informed by the findings from our previous investigations into two-layer central pattern generators (CPGs). Specifically, we examined one plausible synthetic nervous system (SNS) designed to actuate 3 biarticular muscles, including the Biceps femoris posterior (BFP) and Rectus femoris (RF), both of which provide torque about the hip and knee joints. We conducted multiple perturbation tests on the simulation model to investigate the contribution of these two biarticular muscles in stabilizing perturbed hindlimb walking movements. We tested the BFP and RF muscles under three conditions: active, only passive tension, and fully disabled. Our results show that when these two biarticular muscles were active, they not only reduced the impact of external torques, but also facilitated rapid coordination of motion phases. As a result, the hindlimb model with biarticular muscles demonstrated faster recovery compared to our previous monoarticular muscle model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouman, A., et al.: Autonomous Spot: Long-Range Autonomous Exploration of Extreme Environments with Legged Locomotion (2020)

    Google Scholar 

  2. Feng, S., Whitman, E., Xinjilefu, X., Atkeson, C.G.: Optimization based full body control for the atlas robot. In: Proceedings of the 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 120–127. IEEE, Madrid, Spain, November 2014

    Google Scholar 

  3. Hubicki, C., et al.: ATRIAS: design and validation of a tether-free 3D-capable spring-mass bipedal robot. Int. J. Robot. Res. 35, 1497–1521 (2016). https://doi.org/10.1177/0278364916648388

    Article  Google Scholar 

  4. Hutter, M., et al.: ANYmal - a highly mobile and dynamic quadrupedal robot. In: Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 38–44, October 2016

    Google Scholar 

  5. Geng, T., Porr, B., Worgotter, F.: Self-stabilized biped walking under control of a novel reflexive network. In: Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3269–3274, August 2005

    Google Scholar 

  6. Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.-M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315, 1416–1420 (2007). https://doi.org/10.1126/science.1138353

    Article  Google Scholar 

  7. Yang, W., Kim, H., You, B.J.: Biologically inspired self-stabilizing control for bipedal robots. Int. J. Adv. Rob. Syst. 10, 144 (2013). https://doi.org/10.5772/55463

    Article  Google Scholar 

  8. Szczecinski, N.S., et al.: Introducing MantisBot: hexapod robot controlled by a high-fidelity, real-time neural simulation. In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3875–3881. IEEE, Hamburg, Germany, September 2015

    Google Scholar 

  9. Kimura, H., Fukuoka, Y., Cohen, A.H.: Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. Int. J. Robot. Res. (2016).https://doi.org/10.1177/0278364907078089

  10. Hunt, A., Szczecinski, N., Quinn, R.: Development and training of a neural controller for hind leg walking in a dog robot. Front. Neurorobot. 11 (2017). https://doi.org/10.3389/fnbot.2017.00018

  11. Kim, J.-Y., Park, I.-W., Oh, J.-H.: Walking control algorithm of biped humanoid robot on uneven and inclined floor. J. Intell. Robot. Syst. 48, 457–484 (2007). https://doi.org/10.1007/s10846-006-9107-8

    Article  Google Scholar 

  12. Schilling, M., et al.: A hexapod walker using a heterarchical architecture for action selection. Front. Comput. Neurosci. 7, 126 (2013). https://doi.org/10.3389/fncom.2013.00126

    Article  Google Scholar 

  13. Szczecinski, N.S., Brown, A.E., Bender, J.A., Quinn, R.D., Ritzmann, R.E.: A neuromechanical simulation of insect walking and transition to turning of the cockroach Blaberus discoidalis. Biol. Cybern. 108(1), 1–21 (2013). https://doi.org/10.1007/s00422-013-0573-3

    Article  Google Scholar 

  14. Hunt, A., Schmidt, M., Fischer, M., Quinn, R.: A biologically based neural system coordinates the joints and legs of a tetrapod. Bioinspiration Biomim. 10, 055004 (2015). https://doi.org/10.1088/1748-3190/10/5/055004

    Article  Google Scholar 

  15. Deng, K., et al.: Neuromechanical model of rat hindlimb walking with two-layer CPGs. Biomimetics 4, 21 (2019)

    Article  Google Scholar 

  16. Forssberg, H., Grillner, S., Halbertsma, J., Rossignol, S.: The locomotion of the low spinal cat II. Interlimb coordination. . Acta Physiol. Scand. 108, 283–295 (1980). https://doi.org/10.1111/j.1748-1716.1980.tb06534.x

    Article  Google Scholar 

  17. Frigon, A., Hurteau, M.-F., Thibaudier, Y., Leblond, H., Telonio, A., D’Angelo, G.: Split-belt walking alters the relationship between locomotor phases and cycle duration across speeds in intact and chronic spinalized adult cats. J. Neurosci. 33, 8559–8566 (2013). https://doi.org/10.1523/JNEUROSCI.3931-12.2013

    Article  Google Scholar 

  18. Frigon, A., Thibaudier, Y., Hurteau, M.-F.: Modulation of forelimb and hindlimb muscle activity during quadrupedal tied-belt and split-belt locomotion in intact cats. Neuroscience 290, 266–278 (2015). https://doi.org/10.1016/j.neuroscience.2014.12.084

    Article  Google Scholar 

  19. Brown, T.: The Intrinsic Factors in the Act of Progression in the Mammal, Royal Society of London (1911)

    Google Scholar 

  20. Grillner, S., McCLELLAN, A., Sigvardt, K., Wallén, P., Wilén, M.: Activation of NMDA-receptors elicits fictive locomotion in lamprey spinal cord in vitro. Acta Physiol. Scand. 113, 549–551 (1981). https://doi.org/10.1111/j.1748-1716.1981.tb06937.x

    Article  Google Scholar 

  21. Brown, T.G.: On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J. Physiol. 48, 18–46 (1914). https://doi.org/10.1113/jphysiol.1914.sp001646

    Article  Google Scholar 

  22. Hägglund, M., Dougherty, K.J., Borgius, L., Itohara, S., Iwasato, T., Kiehn, O.: Optogenetic dissection reveals multiple rhythmogenic modules underlying locomotion. PNAS 110, 11589–11594 (2013). https://doi.org/10.1073/pnas.1304365110

    Article  Google Scholar 

  23. Bässler, U., Büschges, A.: Pattern generation for stick insect walking movements—multisensory control of a locomotor program. Brain Res. Rev. 27, 65–88 (1998). https://doi.org/10.1016/S0165-0173(98)00006-X

    Article  Google Scholar 

  24. Arbas, E.A., Calabrese, R.L.: Ionic conductances underlying the activity of interneurons that control heartbeat in the medicinal leech. J. Neurosci. 7, 3945–3952 (1987). https://doi.org/10.1523/JNEUROSCI.07-12-03945.1987

    Article  Google Scholar 

  25. Tryba, A.K., Peña, F., Ramirez, J.-M.: Gasping activity in vitro: a rhythm dependent on 5-HT2A receptors. J. Neurosci. 26, 2623–2634 (2006). https://doi.org/10.1523/JNEUROSCI.4186-05.2006

    Article  Google Scholar 

  26. Grillner, S., Zangger, P.: On the central generation of locomotion in the low spinal cat. Exp. Brain Res. 34, 241–261 (1979)

    Article  Google Scholar 

  27. Rybak, I.A., Shevtsova, N.A., Lafreniere-Roula, M., McCrea, D.A.: Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J. Physiol. 577, 617–639 (2006). https://doi.org/10.1113/jphysiol.2006.118703

    Article  Google Scholar 

  28. Deng, K., Szczecinski, N.S., Hunt, A.J., Chiel, H.J., Quinn, R.D.: Kinematic and kinetic analysis of a biomechanical model of rat hind limb with biarticular muscles. In: Vouloutsi, V., Mura, A., Tauber, F., Speck, T., Prescott, T.J., Verschure, P.F.M.J. (eds.) Biomimetic and Biohybrid Systems. Living Machines 2020. LNCS, vol. 12413, pp. 55–67. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64313-3_7

  29. Young, F., Rode, C., Hunt, A., Quinn, R.: Analyzing moment arm profiles in a full-muscle rat hindlimb model. Biomimetics 4, 10 (2019). https://doi.org/10.3390/biomimetics4010010

    Article  Google Scholar 

  30. Deng, K., et al.: Biomechanical and sensory feedback regularize the behavior of different locomotor central pattern generators. Biomimetics 7, 226 (2022). https://doi.org/10.3390/biomimetics7040226

    Article  Google Scholar 

  31. Cofer, D., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W.J., Edwards, D.H.: AnimatLab: a 3D graphics environment for neuromechanical simulations. J. Neurosci. Methods 187, 280–288 (2010). https://doi.org/10.1016/j.jneumeth.2010.01.005

    Article  Google Scholar 

  32. Shadmehr, R., Arbib, M.A.: A mathematical analysis of the force-stiffness characteristics of muscles in control of a single joint system. Biol. Cybern. 66, 463–477 (1992). https://doi.org/10.1007/BF00204111

    Article  MATH  Google Scholar 

  33. Shadmehr, R., Wise, S.: A Mathematical Muscle Model

    Google Scholar 

  34. Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: Design process and tools for dynamic neuromechanical models and robot controllers. Biol. Cybern. 111(1), 105–127 (2017). https://doi.org/10.1007/s00422-017-0711-4

    Article  MathSciNet  MATH  Google Scholar 

  35. Szczecinski, N.S., Quinn, R.D., Hunt, A.J.: Extending the functional subnetwork approach to a generalized linear integrate-and-fire neuron model. Front. Neurorobot. 14 (2020). https://doi.org/10.3389/fnbot.2020.577804

  36. Markin, S.N., Klishko, A.N., Shevtsova, N.A., Lemay, M.A., Prilutsky, B.I., Rybak, I.A.: Afferent control of locomotor CPG: insights from a simple neuromechanical model. Ann. N. Y. Acad. Sci. 1198, 21–34 (2010). https://doi.org/10.1111/j.1749-6632.2010.05435.x

    Article  Google Scholar 

  37. Daun-Gruhn, S., Büschges, A.: From neuron to behavior: dynamic equation-based prediction of biological processes in motor control. Biol. Cybern. 105, 71–88 (2011). https://doi.org/10.1007/s00422-011-0446-6

    Article  Google Scholar 

  38. Markin, S., Klishko, A., Shevtsova, N., Lemay, M., Prilutsky, B., Rybak, I.: A neuromechanical model of spinal control of locomotion. In: Prilutsky, B., Edwards, D. (eds.) Neuromechanical Modeling of Posture and Locomotion, pp. 21–65. SSCN. Springer, New York, NY (2016). ISBN 978-1-4939-3267-2. https://doi.org/10.1007/978-1-4939-3267-2_2

  39. Shevtsova, N., Hamade, K., Chakrabarty, S., Markin, S., Prilutsky, B., Rybak, I.: Modeling the organization of spinal cord neural circuits controlling two-joint muscles. In: Prilutsky, B., Edwards, D. (eds.) Neuromechanical Modeling of Posture and Locomotion, pp. 121–162. SSCN. Springer, New York, NY (2016). ISBN 978-1-4939-3267-2. https://doi.org/10.1007/978-1-4939-3267-2_5

Download references

Acknowledgements

This work was supported by grants from the NSF DBI 2015317 as part of the NSF/CIHR/DFG/FRQ/UKRIMRC Next Generation Networks for the Neuroscience Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiyu Deng .

Editor information

Editors and Affiliations

Appendix

Appendix

List of Acronyms

CPG:

Central pattern generator

SNS:

Synthetic nervous system

BFP:

Biceps femoris posterior

RF:

Rectus femoris

GA:

Gastrocnemii

IP:

Iliopsoas

BPF:

Biceps femoris anterior

VA:

Vastii

SO:

Soleus

TA:

Tibialis anterior

RG:

Rhythm generator

PF:

Pattern formation

MN:

Motoneuron

IN:

Interneuron

RE:

Renshaw cell

EXT:

Extensor

FLX:

Flexor

AD:

Adaptor

Table 1. Neural parameters
Table 2. Synapse parameters.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, K., Hunt, A.J., Chiel, H.J., Quinn, R.D. (2023). Biarticular Muscles Improve the Stability of a Neuromechanical Model of the Rat Hindlimb. In: Meder, F., Hunt, A., Margheri, L., Mura, A., Mazzolai, B. (eds) Biomimetic and Biohybrid Systems. Living Machines 2023. Lecture Notes in Computer Science(), vol 14158. Springer, Cham. https://doi.org/10.1007/978-3-031-39504-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39504-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39503-1

  • Online ISBN: 978-3-031-39504-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics