Skip to main content

Device-Based Treatment in Hypertension and Heart Failure

  • Chapter
  • First Online:
Hypertension and Heart Failure

Part of the book series: Updates in Hypertension and Cardiovascular Protection ((UHCP))

  • 124 Accesses

Abstract

The cardiovascular continuum from the hypertensive state to decompensated heart failure has seen in the last decade a great improvement not only in pharmacological therapy but also in the device-based treatment. This aspect is particularly evident for the great development of devices useful to improve contractility and hemodynamic of the heart and for the important evolution in left ventricular assist devices. In hypertensive patients, the evolution has been concentrated on devices capable of interfering with the pathophysiologic mechanisms that sustain blood pressure, i.e., adrenergic tone and baroreflex mechanism. The chapter will briefly depict the principal innovative devices developed for treating these pathophysiologic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mancia G, Grassi G, Giannattasio C, Seravalle G. Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension. 1999;34:724–8.

    Article  CAS  Google Scholar 

  2. Seravalle G, Lonati L, Buzzi S, et al. Sympathetic nerve traffic and baroreflex function in optimal, normal, and high-normal blood pressure states. J Hypertens. 2015;33:1411–7.

    Article  CAS  Google Scholar 

  3. Grassi G, Pisano A, Bolignano D, et al. Sympathetic nerve traffic activation in essential hypertension and its correlates. Systematic reviews and meta-analyses. Hypertension. 2018;72:483–91.

    Article  CAS  Google Scholar 

  4. Grassi G, Seravalle G, Brambilla G, et al. Marked sympathetic activation and baroreflex dysfunction in true resistant hypertension. Int J Cardiol. 2014;177:1020–5.

    Article  Google Scholar 

  5. Seravalle G, Quarti-Trevano F, Dell’Oro R, et al. Sympathetic and baroreflex alterations in congestive heart failure with preserved, midrange and reduced ejection fraction. J Hypertens. 2019;37:443–8.

    Article  CAS  Google Scholar 

  6. Grassi G, D’Arrigo G, Pisano A, et al. Sympathetic neural overdrive in congestive heart failure and its correlates: systematic reviews and meta-analysis. J Hypertens. 2019;37:1746–56.

    Article  CAS  Google Scholar 

  7. Go AS, Mozaffarian D, Roger VL, et al. American Heart Association statistics committee and stroke statistic subcommittee. Heart disease and stroke statistics-2014 update: a report from the American Heart Association. Circulation. 2014;129:e28–292.

    Google Scholar 

  8. Krum H, Schlaich M, Withbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicenter safety and proof-of-principle cohort study. Lancet. 2009;373:1275–81.

    Article  Google Scholar 

  9. Seravalle G, Dell’Oro R, Grassi G. Baroreflex activation therapy systems: current status and future prospects. Expert Rev Med Devices. 2019;16:1025–33.

    Article  CAS  Google Scholar 

  10. Bisognano JD, Bakris G, Nadim MK, et al. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from double-blind, randomized, placebo-controlled Rheos pivotal trial. J Am Coll Cardiol. 2011;58:765–73.

    Article  Google Scholar 

  11. Bakris GL, Nadim MK, Haller H, et al. Baroreflex activation therapy provides durable benefit in patients with resistant hypertension: results of long-term follow-up in the Rheos pivotal trial. J Am Soc Hypertens. 2012;6:152–8.

    Article  Google Scholar 

  12. Hoppe UC, Brandt MC, Watcher R, et al. Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: results from the Barostim neo trial. J Am Soc Hypertens. 2012;6:270–6.

    Article  Google Scholar 

  13. Zile MR, Abraham WT, Weaver FA, et al. Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction: safety and efficacy in patients with and without cardiac resynchronization therapy. Eur J Heart Fail. 2015;17:1066–74.

    Article  Google Scholar 

  14. Gronda E, Seravalle G, Quarti-Trevano F, et al. Long-term chronic baroreflex activation: persistent efficacy in patients with heart failure and reduced ejection fraction. J Hypertens. 2015;33:1704–8.

    Article  CAS  Google Scholar 

  15. Grassi G, Brambilla G, Prata Pizzalla D, Seravalle G. Baroreflex activation therapy in congestive heart failure: novel findings and future insights. Curr Hypertens Rep. 2016;18:60.

    Article  Google Scholar 

  16. DiBona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1997;77:75–197.

    Article  CAS  Google Scholar 

  17. Stella A, Zanchetti A. Functional role of renal afferents. Physiol Rev. 1991;71:659–82.

    Article  CAS  Google Scholar 

  18. Lohmeier TE, Irwin ED, Rossing MA, et al. Prolonged activation of the baroreflex produces sustained hypotension. Hypertension. 2004;43:306–11.

    Article  CAS  Google Scholar 

  19. Seravalle G, Grassi G. Carotid baroreceptor stimulation in resistant hypertension and heart failure. High Blood Press Cardiovasc Prev. 2015;22:233–9.

    Article  Google Scholar 

  20. Esler MD, Krum H, Sobotka PA, Symplicity HTN-2 Investigators, et al. Renal sympathetic denervation in patients with treatment resistant hypertension: a randomized controlled trial. Lancet. 2010;376:1903–9.

    Article  Google Scholar 

  21. Krum H, Schlaich MP, Sobotka PA, et al. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the symplicity HTN-1 study. Lancet. 2014;383:622–9.

    Article  Google Scholar 

  22. Esler MD, Bohm M, Sievert H, et al. Catheter-based renal denervation for treatment of patients with treatment-resistant hypertension: 36 months results from the symplicity HTN-2 randomized clinical trial. Eur Heart J. 2014;35:1752–9.

    Article  Google Scholar 

  23. Bhatt DL, Kandzari DE, O’Neill WW, Symplicity HTN-3 Investigators, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370:1393–401.

    Article  CAS  Google Scholar 

  24. Bhatt DL, Bakris GL. Renal denervation for resistant hypertension. N Engl J Med. 2014;371:184.

    Google Scholar 

  25. Weber MA, Schiffrin EL, White WB, et al. Clinical practice guidelines for the management of hypertension in the community: a statement by the American Society of Hypertension and the International Society of Hypertension. J Clin Hypertens. 2014;16:14–26.

    Article  Google Scholar 

  26. Ott C, Schmieder RE. Invasive treatment of resistant hypertensin: present and future. Curr Hypertens Rep. 2014;16:488.

    Article  Google Scholar 

  27. Whitbourn R, Harding SA, Walton A. Symplicity multi-electrode radiofrequency renal denervation system feasibility study. EuroIntervention. 2015;11:104–9.

    Article  Google Scholar 

  28. Mahfoud F, Mancia G, Schmieder R, et al. Renal denervation in high-risk patients with hypertension. J Am Coll Cardiol. 2020;75:2879–88.

    Article  Google Scholar 

  29. Persu A, Jin Y, Azizi M, et al. European Network COordinating Research on Renal Denervation (ENCOReD). Blood pressure changes after renal denervation at 10 European expert centers. J Hum Hypertens. 2014;28:150–6.

    Article  Google Scholar 

  30. Mahfoud F, Ukena C, Schmieder RE, et al. Ambulatory blood pressure changes after renal sympathetic denervation in patients with resistant hypertension. Circulation. 2013;128:132–40.

    Article  CAS  Google Scholar 

  31. Vogel B, Kirchberger M, Zeier M, et al. Renal sympathetic denervation therapy in the real world: results from the Heidelberg registry. Clin Res Cardiol. 2014;103:117–24.

    Article  Google Scholar 

  32. Hering D, Mahfoud F, Walton AS, et al. Renal denervation in moderate to severe CKD. J Am Soc Nephrol. 2021;23:1250–7.

    Article  Google Scholar 

  33. Ott C, Mahfoud F, Schmid A, et al. Renal denervation in moderate treatment-resistant hypertension. J Am Coll Cardiol. 2013;62:1880–6.

    Article  Google Scholar 

  34. Papademetriou V, Tsioufis CP, Sinhal A, et al. Catheter-based renal denervation for resistant hypertension: 12-months results of the EnligHTN 1 first-in-human study using a multielectrode ablation system. Hypertension. 2014;64:565–72.

    Article  CAS  Google Scholar 

  35. Sievert H, Schofer J, Ormiston J, et al. Bipolar radiofrequency renal denervation with the Vessix catheter in patients with resistant hypertension: 2-year results from the REDUCE-HTN trial. J Hum Hypertens. 2017;31:366–8.

    Article  CAS  Google Scholar 

  36. Verheye S, Ormiston J, Bergmann MW, et al. Twelve-month results of the rapid renal sympathetic denervation for resistant hypertension using the OneShot™ ablation system (RAPID) study. EuroIntervention. 2015;10:1221–9.

    Article  Google Scholar 

  37. Daemen J, Mahfoud F, Kuck KH, et al. Safety and efficacy of endovascular ultrasound renal denervation in resistant hypertension: 12-month results from the ACHIEVE study. J Hypertens. 2019;37:1906–12.

    Article  CAS  Google Scholar 

  38. Chernin G, Szwarcfiter I, Steinert D, et al. First-in-man experience with a novel catheter-based renal denervation system of ultrasonic ablation in patients with resistant hypertension. J Vasc Interv Radiol. 2018;29:1158–66.

    Article  Google Scholar 

  39. Fischell TA, Ebner A, Gallo S, et al. Transcatheter alcohol-mediated perivascular renal denervation with the peregrine system: first-in-human experience. JACC Cardiovasc Interv. 2016;9:589–98.

    Article  Google Scholar 

  40. Heuser RR, Mahtre AU, Buelna TJ, et al. A novel non-vascular system to treat resistant hypertension. EuroIntervention. 2013;9:135–9.

    Article  Google Scholar 

  41. Ormiston JA, Anderson T, Brinton TJ, et al. TCT-412 non-invasive renal denervation using externally delivered focused ultrasound: early experience using Doppler based imaging tracking and targeting for treatment. J Am Coll Cardiol. 2014;64:11-S. https://doi.org/10.1016/j.jacc.2014.07.461.

    Article  Google Scholar 

  42. Schmieder RE, Ott C, Toennes SW, et al. Phase II randomized sham-controlled study of renal denervation for individuals with uncontrolled hypertension—WAVE IV. J Hypertens. 2018;36:680–9.

    Article  CAS  Google Scholar 

  43. Kroon A, Schmidli J, Sheffers I, et al. Chronically implanted system: 4-year data of Rheos DEBuT-HT study in patients with resistant hypertension. J Hypertens. 2012;28(suppl A):e441.

    Google Scholar 

  44. Heusser K, Tank J, Engeli S, et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension. 2010;55:619–26.

    Article  CAS  Google Scholar 

  45. Bakris GL, Nadim MK, Haller H, et al. Baroreflex activation therapy provides durable benefits in patients with resistant hypertension: results of long-term follow up in the Rheos pivotal trial. J Am Soc Hypertens. 2012;6:152–8.

    Article  Google Scholar 

  46. Wallbach M, Lehning LY, Schroer C, et al. Effects of baroreflex activation therapy on ambulatory blood pressure in patients with resistant hypertension. Hypertension. 2016;67:701–9.

    Article  CAS  Google Scholar 

  47. Spiering W, Williams B, van der Heyden J, CALM-FIM-EUR Investigators, et al. Endovascular baroreflex amplification for resistant hypertension: a safety and proof-of-principle clinical study. Lancet. 2017;390:2655–61.

    Article  Google Scholar 

  48. Foran JP, Jain AK, Casserly JP, et al. The ROX coupler: creation of a fixed iliac arteriovenous anastomosis for the treatment of uncontrolled systemic arterial hypertension, exploiting the physical properties of the arterial vasculature. Catheter Cardiovasc Interv. 2015;85:880–6.

    Article  Google Scholar 

  49. Burchell AE, Lobo MD, Sulke N, et al. Arteriovenous anastomosis: is this the way to control hypertension? Hypertension. 2014;64:6–12.

    Article  CAS  Google Scholar 

  50. Kapil V, Sobotka PA, Saxena M, et al. Central iliac arteriovenous anastomosis for hypertension: targeting mechanical aspects of the circulation. Curr Hypertens Rep. 2015;17:585.

    Article  Google Scholar 

  51. Lobo MD, Sobotka PA, Stanton A, et al. Central arteriovenous anastomosis for the treatment of patients with uncontrolled hypertension (the ROX CONTROL HTN study): a randomized controlled trial. Lancet. 2015;385:1634–41.

    Article  Google Scholar 

  52. Li P, Tjen-A-Looi SC, Cheng L, et al. Long-lasting reduction of blood pressure by electro-acupuncture in patients with hypertension: randomized controlled trial. Med Acupunct. 2015;27:253–66.

    Article  Google Scholar 

  53. Annoni EM, Xie X, Lee SW, et al. Intermittent electrical stimulation of the right cervical vagus nerve in salt-sensitive hypertensive rats: effects on blood pressure, arrhythmias, and ventricular electrophysiology. Physiol Rep. 2015;3:e12476.

    Article  Google Scholar 

  54. Gierthmuehlen M, Plachta DT. Effects of selective vagal nerve stimulation on blood pressure, heart rate and respiratory rate in rats under metoprolol medication. Hypertens Res. 2016;39:79–87.

    Article  CAS  Google Scholar 

  55. Mirkovic T, Knezevic I, Radan I, et al. Frequency dependent effect of selective biphasic left vagus nerve stimulation on heart rate and arterial pressure. Signa Vitae. 2012;7:63–8.

    Article  Google Scholar 

  56. Davies JE, Manisty CH, Petraco E, et al. First-in-man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH-pilot study. Int J Cardiol. 2013;162:189–92.

    Article  Google Scholar 

  57. Patel HC, Rosen SD, Hayward C, et al. Renal denervation in heart failure with preserved ejection fraction (RDT-PEF): a randomized controlled trial. Eur J Heart Fail. 2016;18:703–12.

    Article  CAS  Google Scholar 

  58. Dai Q, Lu J, Wang B, Ma G. Effect of percutaneous renal sympathetic nerve radiofrequency ablation in patients with severe heart failure. Int J Clin Exp Med. 2015;8:9779–85.

    Google Scholar 

  59. Chen W, Ling Z, Xu Y, et al. Preliminary effects of renal denervation with saline irrigated catheter on cardiac systolic function in patients with heart failure: a prospective, randomized, controlled, pilot study. Catheter Cardiovasc Interv. 2017;89:E153–61.

    Article  Google Scholar 

  60. Gao JQ, Xie Y, Yang W, et al. Effects of percutaneous renal sympathetic denervation on cardiac function and exercise tolerance in patients with chronic heart failure. Rev Port Cardiol. 2017;36:45–51.

    Article  Google Scholar 

  61. Fukuta H, Goto T, Wakami K, Ohte N. Effects of catheter-based renal denervation on heart failure with reduced ejection fraction: a systematic review and meta-analysis. Heart Fail Rev. 2017;22:657–64.

    Article  Google Scholar 

  62. Lu Y, Zhang L, Zhou X, Tang B. Renal sympathetic denervation: a potential alternative strategy for patients with heart failure. Int J Cardiol. 2015;201:140–1.

    Article  Google Scholar 

  63. Gronda E, Seravalle G, Brambilla G, et al. Chronic baroreflex activation effects on sympathetic nerve traffic, baroreflex function and cardiac haemodynamics in heart failure. A proof-of-concept study. Eur J Heart Fail. 2014;16:977–83.

    Article  Google Scholar 

  64. Abraham WT, Zile MR, Weaver FA, et al. Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction. J Am Coll Cardiol Heart Fail. 2015;3:487–96.

    Google Scholar 

  65. Hallbach M, Abraham WT, Butter C, et al. Baroreflex activation therapy for the treatment of heart failure with reduced ejection fraction in patients with and without coronary artery disease. Int J Cardiol. 2018;266:187–92.

    Article  Google Scholar 

  66. Dell’Oro R, Gronda G, Seravalle G, et al. Restoration of normal sympathetic neural function in heart failure following baroreflex activation therapy: final 43-month study report. J Hypertens. 2017;35:2532–6.

    Article  Google Scholar 

  67. Zile MR, Bennett TD, St John Sutton M, et al. Transition from chronic compensated to acute decompensated heart failure: pathophysiological insights obtained from continuous monitoring of intracardiac pressures. Circulation. 2008;118:1433–41.

    Article  Google Scholar 

  68. Barnes RJ, Bower EA, Rink TJ. Haemodynamic responses to stimulation of the splanchnic and cardiac sympathetic nerves in the anaesthetized cat. J Physiol. 1986;378:417–36.

    Article  CAS  Google Scholar 

  69. Fudim M, Ganesh A, Green C, et al. Splanchnic nerve block for decompensated chronic heart failure: splanchnic-HF. Eur Heart J. 2018;39:4255–6.

    Article  Google Scholar 

  70. Fudim M, Jones WS, Boortz-Marx RL, et al. Splanchnic nerve block for acute heart failure. Circulation. 2018;138:951–3.

    Article  Google Scholar 

  71. Sondegaard L, Reddy V, Kaye D, et al. Transcatheter treatment of heart failure with preserved or mildly reduced ejection fraction using a novel interatrial implant to lower left atrial pressure. Eur J Heart Fail. 2014;16:796–801.

    Article  Google Scholar 

  72. Hasenfuß G, Hayward C, Burkhoff D, et al. A transcatheter intracardiac shunt device for heart failure with preserved ejection fraction (REDUCE LAP-HF): a multicenter, open-label, single arm, phase 1 trial. Lancet. 2016;387:1298–304.

    Article  Google Scholar 

  73. Del Trigo M, Bergeron S, Bernier M, et al. Unidirectional left-to-right interatrial shunting for treatment of patients with heart failure with reduced ejection fraction: a safety and proof-of-principle cohort study. Lancet. 2016;387:1290–7.

    Article  Google Scholar 

  74. Rodes-Cabau J, Bernier M, Amat-Santos IJ, et al. Interatrial shunting for heart failure: early and late results from the first-in-human experience with the V-Wave system. J Am Coll Cardiol Interv. 2018;11:2300–10.

    Article  Google Scholar 

  75. Guimaraes L, Bergeron S, Bernier M, et al. Interatrial shunt with the second generation V-Wave system for patients with advanced chronic heart failure. EuroIntervention. 2002;15:1426–8.

    Article  Google Scholar 

  76. Patel MB, Samuel BO, Girgis RE, et al. Implantable atrial flow regulator for severe, irreversible pulmonary arterial hypertension. EuroIntervention. 2015;11:706–9.

    Article  Google Scholar 

  77. Rajeshkumar R, Pavithran S, Sivakumar K, et al. Atrial septostomy with a predefined diameter using a novel occlutech atrial flow regulator improves symptoms and cardiac index in patients with severe pulmonary arterial hypertension. Catheter Cardiovasc Interv. 2017;9:1145–53.

    Article  Google Scholar 

  78. Paitazoglou C, Bergmann MW, Ozdemir R, et al. One year results of the first-in-man study investigating the atrial flow regulator for left atrial shunting in symptomatic heart failure patients: the PRELIEVE study. Eur J Heart Fail. 2021;23:800–10.

    Article  Google Scholar 

  79. Simard T, Labinaz M, Zahr R, et al. Percutaneous atriotomy for levoatrial-to-coronary sinus shunting in symptomatic heart failure: first-in-human experience. J Am Coll Cardiol Interv. 2020;13:1236–47.

    Article  Google Scholar 

  80. Feld Y, Dubi S, Reisner Y, et al. Future strategies for the treatment of diastolic heart failure. Acute Card Care. 2006;8:13–20.

    Article  Google Scholar 

  81. Feld Y, Dubi S, Reisner Y, et al. Energy transfer from systole to diastole: a novel device-based approach for the treatment of diastolic heart failure. Acute Card Care. 2011;13:232–42.

    Article  Google Scholar 

  82. ImCardia TM for DHF to Treat Diastolic Heart Failure (DHF) Patient a Pilot Study (ImCardia). https://clinicaltrials.gov/ct2/show/NCT01347125. Accessed 1 May 2021.

  83. Feld Y, Reisner Y, Meyer-Brodnitz G, et al. The CORolla device for energy transfer from systole to diastole: a novel treatment for heart failure with preserved ejection fraction. Heart Fail Rev. 2021;28:307. https://doi.org/10.1007/s10741-021-10104-x.

    Article  Google Scholar 

  84. CORolla TAA for Heart Failure With Preserved Ejection Fraction (HFpEF) and Diastolic Dysfunction (DD). https://clinicaltrials.gov/ct2/show/NCTO2499601. Accessed 1 May 2021.

  85. Borggrefe M, Mann DL. Cardiac contractility modulation in 2018. Circulation. 2018;138:2738–40.

    Article  Google Scholar 

  86. Imai M, Rastogi S, Gupta RC, et al. Therapy with cardiac contractility modulation electrical signals improves left ventricular function and remodeling in dogs with chronic heart failure. J Am Coll Cardiol. 2007;49:2120–8.

    Article  Google Scholar 

  87. Kuschyk J, Roger S, Schneider R, et al. Efficacy and survival in patients with cardiac contractility modulation: long-term single center experience in 81 patients. Int J Cardiol. 2015;183:76–81.

    Article  Google Scholar 

  88. Abraham WT, Kuck K-H, Goldsmith RL, et al. A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation. JACC Heart Fail. 2018;6:874–83.

    Article  Google Scholar 

  89. Abraham WT. Cardiac resynchronization therapy. In: Semirgran M, Shin JT, editors. Heart failure. 2nd ed. CRC Press; 2012.

    Google Scholar 

  90. Auricchio A, Stelibrink C, Sack S, et al. Long-term clinical effect of hemodynamically optimized cardiac resynchronization therapy in patients with heart failure and ventricular conduction delay. J Am Coll Cardiol. 2002;39:2026–33.

    Article  Google Scholar 

  91. Bradley DJ, Bradley EA, Baughman KL, et al. Cardiac resynchronization and death from progressive heart failure: a meta-analysis of randomized controlled trials. JAMA. 2003;289:730–40.

    Article  Google Scholar 

  92. Cleland JG, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352:1539–49.

    Article  CAS  Google Scholar 

  93. St John Sutton MG, Plappert T, Abraham WT, et al. Effects of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. Circulation. 2003;107:1985–90.

    Article  Google Scholar 

  94. Moss AJ, Hall WJ, Cannon DS, et al. Cardiac resynchronization therapy for the prevention of heart failure events. N Engl J Med. 2009;361:1329–38.

    Article  Google Scholar 

  95. McAlister FA, Ezekowitz J, Hoorton N, et al. Cardiac resynchronization therapy for patients with left ventricular systolic dysfunction: a systematic review. JAMA. 2007;297:2502–14.

    Article  CAS  Google Scholar 

  96. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599–726.

    Article  CAS  Google Scholar 

  97. Miller LW, Rogers JG. Evolution of left ventricular assist device therapy for advanced heart failure. A review. JAMA Cardiol. 2018;3:650–8.

    Article  Google Scholar 

  98. Frigerio M. Left ventricular assist device. Indication, timing, and management. Heart Fail Clin. 2021;17:619–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gino, S., Grassi, G. (2023). Device-Based Treatment in Hypertension and Heart Failure. In: Dorobantu, M., Voicu, V., Grassi, G., Agabiti-Rosei, E., Mancia, G. (eds) Hypertension and Heart Failure. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-031-39315-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39315-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39314-3

  • Online ISBN: 978-3-031-39315-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics