Skip to main content

Analysis of Damage and Fracture in Anisotropic Sheet Metals Based on Biaxial Experiments

  • Conference paper
  • First Online:
Creep in Structures VI (IUTAM 2023)

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 194))

Included in the following conference series:

  • 240 Accesses

Abstract

The paper discusses the effect of stress state and of loading with respect to the rolling direction on damage and failure of anisotropic ductile sheet metals. For the investigated aluminum alloy EN AW-2017A experiments with uniaxially and biaxially loaded flat specimens have been performed to identify elastic–plastic material parameters. The focus is on numerical analysis on the micro-scale examining the deformation and damage behavior of differently loaded void-containing unit cells to detect damage and failure processes. Results of the finite element calculations show that the stress state and the loading direction with respect to the rolling direction have an effect on formation of damage mechanisms on the micro-level as well as on corresponding macroscopic damage strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brünig M, Gerke S, Hagenbrock V (2013) Micro-mechanical studies on the effect of the stress triaxiality and the Lode parameter on ductile damage. International Journal of Plasticity 50:49–65

    Google Scholar 

  2. Brünig M, Hagenbrock V, Gerke S (2018) Macroscopic damage laws based on analysis of microscopic unit cells. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 98(2):181–194

    Article  ADS  MathSciNet  Google Scholar 

  3. Barsoum I, Faleskog J (2011) Micromechanical analysis on the influence of the Lode parameter on void growth and coalescence. International Journal of Solids and Structures 48(6):925–938

    Article  MATH  Google Scholar 

  4. Gao X, Wang T, Kim J (2005) On ductile fracture initiation toughness: Effects of void volume fraction, void shape and void distribution. International Journal of Solids and Structures 42(18):5097–5117

    Article  MATH  Google Scholar 

  5. Gao X, Zhang G, Roe C (2010) A study on the effect of the stress state on ductile fracture. International Journal of Damage Mechanics 19(1):75–94

    Article  Google Scholar 

  6. Kim J, Gao X, Srivatsan T (2003) Modeling of crack growth in ductile solids: a three-dimensional analysis. International Journal of Solids and Structures 40(26):7357–7374

    Article  MATH  Google Scholar 

  7. Kuna M, Sun D (1996) Three-dimensional cell model analyses of void growth in ductile materials. International Journal of Fracture 81(3):235–258

    Article  Google Scholar 

  8. Scheyvaerts F, Onck P, Tekoglu C, Pardoen T (2011) The growth and coalescence ˇ of ellipsoidal voids in plane strain under combined shear and tension. Journal of the Mechanics and Physics of Solids 59(2):373–397

    Google Scholar 

  9. Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences 193(1033):281–297

    ADS  MathSciNet  MATH  Google Scholar 

  10. Stoughton TB, Yoon JW (2009) Anisotropic hardening and non-associated flow in proportional loading of sheet metals. International Journal of Plasticity 25(9):1777–1817

    Article  MATH  Google Scholar 

  11. Barlat F, Aretz H, Yoon J, Karabin M, Brem J, Dick R (2005) Linear transfomation-based anisotropic yield functions. International Journal of Plasticity 21(5):1009–1039

    Article  MATH  Google Scholar 

  12. Ha J, Baral M, Korkolis YP (2018) Plastic anisotropy and ductile fracture of bake-hardened AA6013 aluminum sheet. International Journal of Solids and Structures 155:123–139

    Article  Google Scholar 

  13. Hu Q, Yoon JW, Manopulo N, Hora P (2021) A coupled yield criterion for anisotropic hardening with analytical description under associated flow rule: Modeling and validation. International Journal of Plasticity 136:102,882

    Google Scholar 

  14. Tsutamori H, Amaishi T, Chorman RR, Eder M, Vitzthum S, Volk W (2020) Evaluation of prediction accuracy for anisotropic yield functions using cruciform hole expansion test. Journal of Manufacturing and Materials Processing 4(2):43

    Article  Google Scholar 

  15. Hoffman O (1967) The brittle strength of orthotropic materials. Journal of Composite Materials 1(2):200–206

    Article  ADS  Google Scholar 

  16. Brünig M (2003) An anisotropic ductile damage model based on irreversible thermodynamics. International Journal of Plasticity 19(10):1679–1713

    Article  MATH  Google Scholar 

  17. Brünig M (2016) A thermodynamically consistent continuum damage model taking into account the ideas of CL Chow. International Journal of Damage Mechanics 25(8):1130–1141

    Article  Google Scholar 

  18. Brünig M, Gerke S, Koirala S (2021) Biaxial experiments and numerical analysis on stress-state-dependent damage and failure behavior of the anisotropic aluminum alloy EN AW-2017A. Metals 11(8):1214

    Article  Google Scholar 

  19. Brünig M, Koirala S, Gerke S (2022) Analysis of damage and failure in anisotropic ductile metals based on biaxial experiments with the H-specimen. Experimental Mechanics 62(2):183–197

    Article  Google Scholar 

  20. Brünig M, Koirala S, Gerke S (2023) A stress-state-dependent damage criterion for metals with plastic anisotropy. International Journal of Damage Mechanics 0(0):10567895231160,810

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Brünig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brünig, M., Koirala, S., Gerke, S. (2023). Analysis of Damage and Fracture in Anisotropic Sheet Metals Based on Biaxial Experiments. In: Altenbach, H., Naumenko, K. (eds) Creep in Structures VI. IUTAM 2023. Advanced Structured Materials, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-031-39070-8_6

Download citation

Publish with us

Policies and ethics