Skip to main content

Encoded Diffractive Optics for Hyperspectral Imaging

  • Chapter
  • First Online:
Coded Optical Imaging
  • 454 Accesses

Abstract

Recent hyperspectral imaging has been taking advantage of the development of diffractive optics elements (DOEs) to encode the spectral information in a single or multiple snapshots. Including these diffractive elements, together with previous codification technologies, has allowed the development of compact optical systems at the expense of computational algorithms for recovering spectral information from encoded optical measurements. Diffractive optics design methodologies improve the reconstruction quality by designing point spread functions with reduced dispersion effects. Even more, diffractive optics designs that achieve state-of-the-art performance have been proposed by leveraging available datasets and algorithms based on deep neural networks. This chapter describes the basics for modeling diffractive optical imaging systems and presents compact diffractive optical systems for hyperspectral imaging, the main diffractive optics design methodologies, and the computational algorithms employed to recover the encoded measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arguello, P., Lopez, J., Hinojosa, C., Arguello, H.: Optics lens design for privacy-preserving scene captioning. In: 2022 IEEE International Conference on Image Processing (ICIP), pp. 3551–3555. IEEE (2022)

    Google Scholar 

  2. Hinojosa, C., Niebles, J.C., Arguello, H.: Learning privacy-preserving optics for human pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2573–2582 (2021)

    Google Scholar 

  3. Goodman, J.W.: Introduction to Fourier optics. Roberts and Company Publishers (2005)

    Google Scholar 

  4. Soifer, V.A., Doskolovich, L., Golovashkin, D., Kazanskiy, N., Kharitonov, S., Khonina, S., Kotlyar, V., Pavelyev, V., Skidanov, R., Solovyev, V., et al.: Methods for computer design of diffractive optical elements. John Willey & Sons, Inc. (2002)

    Google Scholar 

  5. Huo, F., Wang, W., Xue, C.: Limits of scalar diffraction theory for multilayer diffractive optical elements. Optik 127(14), 5688–5694 (2016)

    Article  CAS  Google Scholar 

  6. Kar, O.F., Oktem, F.S.: Fast computational spectral imaging with a programmable diffractive lens. In: Computational Optical Sensing and Imaging, pp. CTh3A–3. Optical Society of America (2019)

    Google Scholar 

  7. Wilson, D.W., Maker, P.D., Muller, R.E., Mouroulis, P., Descour, M.R., Volin, C.E., Dereniak, E.L.: Diffractive optical elements for spectral imaging. In: Diffractive Optics and Micro-Optics, p. DWB1. Optica Publishing Group (2000)

    Google Scholar 

  8. Hu, H., Zhou, H., Xu, Z., Li, Q., Feng, H., Chen, Y., Jiang, T., Xu, W.: Practical snapshot hyperspectral imaging with DOE. Optics and Lasers in Engineering 156, 107098 (2022). https://doi.org/10.1016/j.optlaseng.2022.107098

    Article  Google Scholar 

  9. Baek, S.H., Ikoma, H., Jeon, D.S., Li, Y., Heidrich, W., Wetzstein, G., Kim, M.H.: Single-shot hyperspectral-depth imaging with learned diffractive optics. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2651–2660 (2021)

    Google Scholar 

  10. Hahn, R., Haist, T., Michel, K., Osten, W.: Diffraction-based hyperspectral snapshot imager. Optical Engineering 61(1), 015106 (2022)

    Article  Google Scholar 

  11. Hübner, M., Lenk, L., Markweg, E., Sinzinger, S.: Compressive sensing hyperspectral imaging with optimized diffractive optical elements (conference presentation). In: Photonic Instrumentation Engineering VII, vol. 11287, p. 112870M. SPIE (2020)

    Google Scholar 

  12. Heide, F., Fu, Q., Peng, Y., Heidrich, W.: Encoded diffractive optics for full-spectrum computational imaging. Scientific Reports 6(1), 33543 (2016). https://doi.org/10.1038/srep33543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, P., Menon, R.: Computational multispectral video imaging. J. Opt. Soc. Am. A 35(1), 189–199 (2018). https://doi.org/10.1364/JOSAA.35.000189.

    Article  Google Scholar 

  14. Sitzmann, V., Diamond, S., Peng, Y., Dun, X., Boyd, S., Heidrich, W., Heide, F., Wetzstein, G.: End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging. ACM Transactions on Graphics (TOG) 37(4), 1–13 (2018)

    Article  Google Scholar 

  15. Cu-Nguyen, P.H., Grewe, A., Endrödy, C., Sinzinger, S., Zappe, H., Seifert, A.: Compact tunable hyperspectral imaging system. In: 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 1167–1170. IEEE (2014)

    Google Scholar 

  16. Jeon, D.S., Baek, S.H., Yi, S., Fu, Q., Dun, X., Heidrich, W., Kim, M.H.: Compact snapshot hyperspectral imaging with diffracted rotation. ACM Trans. Graph. 38(4) (2019). https://doi.org/10.1145/3306346.3322946

  17. Peng, Y., Fu, Q., Heide, F., Heidrich, W.: The diffractive achromat full spectrum computational imaging with diffractive optics. In: SIGGRAPH ASIA 2016 Virtual Reality meets Physical Reality: Modelling and Simulating Virtual Humans and Environments, pp. 1–2 (2016)

    Google Scholar 

  18. Dun, X., Ikoma, H., Wetzstein, G., Wang, Z., Cheng, X., Peng, Y.: Learned rotationally symmetric diffractive achromat for full-spectrum computational imaging. Optica 7(8), 913–922 (2020)

    Article  Google Scholar 

  19. Li, L., Wang, L., Song, W., Zhang, L., Xiong, Z., Huang, H.: Quantization-aware deep optics for diffractive snapshot hyperspectral imaging. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 19748–19757 (2022). https://doi.org/10.1109/CVPR52688.2022.01916

  20. Kar, O.F., Oktem, F.S.: Compressive spectral imaging with diffractive lenses. Optics Letters 44(18), 4582–4585 (2019)

    Article  PubMed  Google Scholar 

  21. Arguello, H., Pinilla, S., Peng, Y., Ikoma, H., Bacca, J., Wetzstein, G.: Shift-variant color-coded diffractive spectral imaging system. Optica 8(11), 1424–1434 (2021). https://doi.org/10.1364/OPTICA.439142

    Article  Google Scholar 

  22. Gundogan, U., Oktem, F.S.: Computational spectral imaging with diffractive lenses and spectral filter arrays. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 2938–2942 (2021). https://doi.org/10.1109/ICIP42928.2021.9506357

  23. Galvis, L., Mojica, E., Arguello, H., Arce, G.R.: Shifting colored coded aperture design for spectral imaging. Appl. Opt. 58(7), B28–B38 (2019). https://doi.org/10.1364/AO.58.000B28

    Article  PubMed  Google Scholar 

  24. Boyd, S., Parikh, N., Chu, E.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Now Publishers Inc (2011)

    Google Scholar 

  25. Arguello, H., Bacca, J., Kariyawasam, H., Vargas, E., Marquez, M., Hettiarachchi, R., Garcia, H., Herath, K., Haputhanthri, U., Ahluwalia, B.S., et al.: Deep optical coding design in computational imaging. arXiv preprint arXiv:2207.00164 (2022)

    Google Scholar 

  26. Shi, Y., et al.: Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), vol. 1, pp. 81–86. IEEE (2001)

    Google Scholar 

  27. Baek, S.H., Ikoma, H., Jeon, D.S., Li, Y., Heidrich, W., Wetzstein, G., Kim, M.H.: End-to-end hyperspectral-depth imaging with learned diffractive optics (2020)

    Google Scholar 

  28. Marquez, M., Lai, Y., Liu, X., Jiang, C., Zhang, S., Arguello, H., Liang, J.: Deep-learning supervised snapshot compressive imaging enabled by an end-to-end adaptive neural network. IEEE Journal of Selected Topics in Signal Processing 16(4), 688–699 (2022)

    Article  Google Scholar 

  29. Bacca, J., Gelvez-Barrera, T., Arguello, H.: Deep coded aperture design: An end-to-end approach for computational imaging tasks. IEEE Transactions on Computational Imaging 7, 1148–1160 (2021)

    Article  Google Scholar 

  30. Bacca, J., Galvis, L., Arguello, H.: Coupled deep learning coded aperture design for compressive image classification. Optics Express 28(6), 8528–8540 (2020)

    Article  PubMed  Google Scholar 

  31. Jacome, R., Bacca, J., Arguello, H.: D 2 UF: Deep coded aperture design and unrolling algorithm for compressive spectral image fusion. IEEE Journal of Selected Topics in Signal Processing (2022)

    Google Scholar 

  32. Monroy, B., Bacca, J., Arguello, H.: Deep low-dimensional spectral image representation for compressive spectral reconstruction. In: 2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2021)

    Google Scholar 

  33. Figueiredo, M.A., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing 1(4), 586–597 (2007)

    Article  Google Scholar 

  34. Wagadarikar, A., John, R., Willett, R., Brady, D.: Single disperser design for coded aperture snapshot spectral imaging. Applied Optics 47(10), B44–B51 (2008)

    Article  PubMed  Google Scholar 

  35. Fu, Y., Zheng, Y., Sato, I., Sato, Y.: Exploiting spectral-spatial correlation for coded hyperspectral image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3727–3736 (2016)

    Google Scholar 

  36. Bacca, J., Correa, C.V., Arguello, H.: Noniterative hyperspectral image reconstruction from compressive fused measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 12(4), 1231–1239 (2019)

    Article  Google Scholar 

  37. Wang, L., Xiong, Z., Shi, G., Wu, F., Zeng, W.: Adaptive nonlocal sparse representation for dual-camera compressive hyperspectral imaging. IEEE Transactions on Pattern Analysis and Machine Intelligence 39(10), 2104–2111 (2016)

    Article  PubMed  Google Scholar 

  38. Gedalin, D., Oiknine, Y., Stern, A.: DeepCubeNet: reconstruction of spectrally compressive sensed hyperspectral images with deep neural networks. Optics Express 27(24), 35811–35822 (2019)

    Article  PubMed  Google Scholar 

  39. Mousavi, A., Patel, A.B., Baraniuk, R.G.: A deep learning approach to structured signal recovery. In: 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1336–1343. IEEE (2015)

    Google Scholar 

  40. Palangi, H., Ward, R., Deng, L.: Distributed compressive sensing: A deep learning approach. IEEE Transactions on Signal Processing 64(17), 4504–4518 (2016)

    Article  Google Scholar 

  41. Kulkarni, K., Lohit, S., Turaga, P., Kerviche, R., Ashok, A.: ReconNet: Non-iterative reconstruction of images from compressively sensed measurements. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 449–458 (2016)

    Google Scholar 

  42. Wang, L., Sun, C., Fu, Y., Kim, M.H., Huang, H.: Hyperspectral image reconstruction using a deep spatial-spectral prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  43. Gelvez-Barrera, T., Bacca, J., Arguello, H.: Mixture-Net: Low-rank deep image prior inspired by mixture models for spectral image recovery. arXiv preprint arXiv:2211.02973 (2022)

    Google Scholar 

  44. Vargas, E., Martel, J.N., Wetzstein, G., Arguello, H.: Time-multiplexed coded aperture imaging: Learned coded aperture and pixel exposures for compressive imaging systems. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2692–2702 (2021)

    Google Scholar 

  45. Hinnrichs, M., Hinnrichs, B.: Imaging spectroscopy using embedded diffractive optical arrays. In: Earth Observing Systems XXII, vol. 10402, pp. 143–156. SPIE (2017)

    Google Scholar 

  46. Meza, P., Ortiz, I., Vera, E., Martinez, J.: Compressive hyperspectral imaging recovery by spatial-spectral non-local means regularization. Optics Express 26(6), 7043–7055 (2018)

    Article  PubMed  Google Scholar 

  47. Wang, P., Menon, R.: Ultra-high-sensitivity color imaging via a transparent diffractive-filter array and computational optics. Optica 2(11), 933–939 (2015)

    Article  Google Scholar 

  48. Blank, V., Skidanov, R., Doskolovich, L., Kazanskiy, N.: Spectral diffractive lenses for measuring a modified red edge simple ratio index and a water band index. Sensors 21(22), 7694 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  49. Johnson, A.S., Conesa, J.V., Vidas, L., Perez-Salinas, D., Günther, C.M., Pfau, B., Hallman, K.A., Haglund Jr, R.F., Eisebitt, S., Wall, S.: Quantitative hyperspectral coherent diffractive imaging spectroscopy of a solid-state phase transition in vanadium dioxide. Science Advances 7(33), eabf1386 (2021)

    Google Scholar 

  50. Walkley A, J., Black I, A.: Estimation of soil organic carbon by the chromic acid titration method. Soil Science 37(1), 29–38 (1934)

    Google Scholar 

  51. Arad, B., Timofte, R., Yahel, R., Morag, N., Bernat, A., Cai, Y., Lin, J., Lin, Z., Wang, H., Zhang, Y., et al.: NTIRE 2022 spectral recovery challenge and data set. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 863–881 (2022)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Sistema general de regalías Colombia under Grant BPIN 2020000100415 with UIS code 8933 “Desarrollo de un sistema óptico computacional para estimar el contenido de carbono orgánico de suelos agrícolas a traves de imágenes espectrales e inteligencia artificial en cultivos cítricos de Santander.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Arguello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arguello, H., Galvis, L., Bacca, J., Vargas, E. (2024). Encoded Diffractive Optics for Hyperspectral Imaging. In: Liang, J. (eds) Coded Optical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-031-39062-3_33

Download citation

Publish with us

Policies and ethics