Skip to main content

Sampling-Based Two-Dimensional Temporal Imaging

  • Chapter
  • First Online:
Coded Optical Imaging

Abstract

Imaging dynamically changing events requires time-resolved measurements, which can be challenging for multidimensional imaging applications, especially when the time scale approaches the limit of electronics. In this chapter, we described typical sampling-based temporal domain imaging techniques, often in the nanosecond to femtosecond regimes. The general pulse sampling principles are first introduced along with the concept of time-space conversion and its application in fast optical signal measurements. Key instrumentation technologies enabling such measurements (e.g., light sources and detectors) are summarized. The basic sampling-based time-domain imaging techniques and their variations are subsequently presented, which is the focus of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Becker W (2021) The bh TCSPC handbook, 9th edition, accessed and available on www.becker-hickl.com

  2. Beresh SJ (2021) Time-resolved particle image velocimetry, Meas. Sci. Technol. 32 102003, https://doi.org/10.1088/1361-6501/ac08c5

  3. Richard M. Ballew and J. N. Demas, An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays, Analytical Chemistry 1989 61 (1), 30–33, https://doi.org/10.1021/ac00176a007

  4. D. Bronzi et al., “100 000 Frames/s 64 × 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” in IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 6, pp. 355–364, Nov.–Dec. 2014, Art no. 3804310, https://doi.org/10.1109/JSTQE.2014.2341562.

  5. Bruschini, C., Homulle, H., Antolovic, I.M. et al. (2019) Single-photon avalanche diode imagers in biophotonics: review and outlook. Light Sci Appl 8, 87. https://doi.org/10.1038/s41377-019-0191-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Böhm, U., Hell, S. & Schmidt, R. 4Pi-RESOLFT nanoscopy. Nat Commun 7, 10504 (2016). https://doi.org/10.1038/ncomms10504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. A. J. Campillo and S. L. Shapiro, “Picosecond streak camera fluorometry – A review,” IEEE Journal of Quantum Electronics, vol. 19, no. 4, pp. 585–603, 1983.

    Article  Google Scholar 

  8. Munir El-Desouki, M. Jamal Deen, Qiyin Fang, Louis W. C. Liu, Frances Tse and David Armstrong, “CMOS Image Sensors for High Speed Applications”, Sensors, 9: 430–444, 2009

    Article  PubMed  PubMed Central  Google Scholar 

  9. M. M. El-Desouki, D. Palubiak, M. J. Deen, Q. Fang and O. Marinov, “A Novel, High-Dynamic-Range, High-Speed, and High-Sensitivity CMOS Imager Using Time-Domain Single-Photon Counting and Avalanche Photodiodes,” in IEEE Sensors Journal, vol. 11, no. 4, pp. 1078–1083, April 2011a, https://doi.org/10.1109/JSEN.2010.2058846.

  10. Munir El-Desouki, Ognian Marinov, M. Jamal Deen, Qiyin Fang, “CMOS Active-Pixel Sensor with in-situ memory for ultrahigh-speed imaging,” IEEE Sensors Journal, 11(6): 1375–1379, 2011b

    Article  Google Scholar 

  11. Elson, D., Requejo-Isidro, J., Munro, I. et al. Time-domain fluorescence lifetime imaging applied to biological tissue. Photochem Photobiol Sci 3, 795–801 (2004). https://doi.org/10.1039/b316456j

    Article  CAS  PubMed  Google Scholar 

  12. Lexy von Diezmann, Yoav Shechtman, and W. E. Moerner, Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking, Chemical Reviews 2017 117 (11), 7244–7275, https://doi.org/10.1021/acs.chemrev.6b00629

    Article  CAS  Google Scholar 

  13. Etoh TG, Nguyen AQ, Kamakura Y, Shimonomura K, Le TY, Mori N. The Theoretical Highest Frame Rate of Silicon Image Sensors. Sensors. 2017; 17(3):483. https://doi.org/10.3390/s17030483

    Article  PubMed  PubMed Central  Google Scholar 

  14. Q. Fang, T. Papaioannou, J. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Review of Scientific Instrument, Vol. 75(1): 151–162, 2004

    Article  CAS  Google Scholar 

  15. N. Fleurot, J. P. Gex, M. Rostaing, and R. Sauneuf “High Speed (≤250 ps) High Gain X-Ray Shutter Camera”, Proc. SPIE 0348, 15th Intl Congress on High Speed Photography and Photonics, (1 March 1983); https://doi.org/10.1117/12.967833

  16. Eugene Grigoriev, Alexander Akindinov, Marco Breitenmoser, Stefano Buono, Edoardo Charbon, Cristiano Niclass, Iris Desforges, Roberto Rocca, (2007) Silicon photomultipliers and their bio-medical applications, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 571, Issues 1–2: 130–133, https://doi.org/10.1016/j.nima.2006.10.046.

    Article  CAS  Google Scholar 

  17. Istvan Gyongy, Andrew Green, Sam W. Hutchings, Amy Davies, Neale A. W. Dutton, Rory R. Duncan, Colin Rickman, Robert K. Henderson, Paul A. Dalgarno, “Fluorescence lifetime imaging of high-speed particles with single-photon image sensors,” Proc. SPIE 10889, High-Speed Biomedical Imaging and Spectroscopy IV, 108890O (4 March 2019); https://doi.org/10.1117/12.2510773

  18. Nehad Hirmiz, Anthony Tsikouras, Elizabeth J. Osterlund, Morgan Richards, David W. Andrews, and Qiyin Fang, “Multiplexed confocal microscope with a refraction window scanner and a single-photon avalanche photodiode array detector,” Optics Letters 45(1): 69–72, 2020, https://doi.org/10.1364/OL.45.000069

    Article  CAS  Google Scholar 

  19. Nehad Hirmiz, Anthony Tsikouras, Elizabeth J. Osterlund, Morgan Richards, David W. Andrews, and Qiyin Fang, “Highly Multiplexed Confocal Fluorescence Lifetime Microscope Designed for Screening Applications,” IEEE Selected Topics in Quantum Electronics, 27(5):1–9, 2021, https://doi.org/10.1109/JSTQE.2020.2997834

    Article  Google Scholar 

  20. IEEE Standard for Digitizing Waveform Recorders, 2017

    Google Scholar 

  21. Giuseppe Intermite, Aongus McCarthy, Ryan E. Warburton, Ximing Ren, Federica Villa, Rudi Lussana, Andrew J. Waddie, Mohammad R. Taghizadeh, Alberto Tosi, Franco Zappa, and Gerald S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23, 33777–33791 (2015)

    Article  CAS  PubMed  Google Scholar 

  22. Vijay Iyer, Bradley Edward Losavio, Peter Saggau, “Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy,” J. Biomed. Opt. 8(3) (1 July 2003) https://doi.org/10.1117/1.1580827

  23. Yan Kang, Ruikai Xue, Xiaofang Wang, Tongyi Zhang, Fanxing Meng, Lifei Li, and Wei Zhao, “High-resolution depth imaging with a small-scale SPAD array based on the temporal-spatial filter and intensity image guidance,” Opt. Express 30, 33994–34011 (2022)

    Article  PubMed  Google Scholar 

  24. Valentin Kapitany, Vytautas Zickus, Areeba Fatima, and Daniele Faccio, Single-shot time-folded fluorescence lifetime imaging, PNAS, 120 (16) e2214617120, https://doi.org/10.1073/pnas.2214617120

  25. Georg Kirchner, Franz Koidl, Josef Blazej, Karel Hamal, and Ivan Prochazka “Time-walk-compensated SPAD: multiple-photon versus single-photon operation”, Proc. SPIE 3218, Laser Radar Ranging and Atmospheric Lidar Techniques, (22 December 1997); https://doi.org/10.1117/12.295659

  26. K. Kinoshita, Y. Inagaki, T. Nakamura, A. Takahashi, and M. Koishi “Gated Microchannel Plate Framing Camera”, Proc. SPIE 1155, Ultrahigh Speed and High Speed Photography, Photonics, and Videography ’89: Seventh in a Series, (17 January 1990); https://doi.org/10.1117/12.962446

  27. Martin Kögler and Bryan Heilala (2020) Time-gated Raman spectroscopy – a review, Meas. Sci. Technol. 32 012002, https://doi.org/10.1088/1361-6501/abb044

    Article  CAS  Google Scholar 

  28. Raymond K. Kostuk and James Carriere, “Interconnect characteristics of fiber image guides,” Appl. Opt. 40, 2428–2434 (2001)

    Article  CAS  PubMed  Google Scholar 

  29. Joseph R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer 2006

    Google Scholar 

  30. D. X. Lioe et al., “A CMOS Lock-In Pixel Image Sensor With Multisimultaneous Gate for Time-Resolved Near-Infrared Spectroscopy,” in IEEE Transactions on Electron Devices, vol. 70, no. 3, pp. 1102–1108, March 2023, https://doi.org/10.1109/TED.2023.3236591.

  31. Regina Won Kay Leung, Shu-Chi Allison Yeh, and Qiyin Fang, “Effects of incomplete decay in fluorescence lifetime estimation,” Biomedical Optics Express 2(9):2517–2531, 2011. https://doi.org/10.1364/BOE.2.002517

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lee, J., Park, S. & Hohng, S. Accelerated FRET-PAINT microscopy. Mol Brain 11, 70 (2018). https://doi.org/10.1186/s13041-018-0414-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. J. Mizeret, T. Stepinac, M. Hansroul, A. Studzinski, H. van den Bergh and G. Wagnières, “Instrumentation for real-time fluorescence lifetime imaging in endoscopy,” Review of Scientific Instruments, vol. 70, no. 12, pp. 4689–4701, 1999.

    Article  CAS  Google Scholar 

  34. Min-Woong, S., Shirakawa, Y., Kagawa, K., Yasutomi, K. and Kawahito, S., “A high performance multi-tap CMOS lock-in pixel image sensor for biomedical applications,” High-Speed Biomedical Imaging and Spectroscopy: Toward Big Data Instrumentation and Management II, 10076(100760V) (2017)

    Google Scholar 

  35. B. Nahrath, M. Shakhatre, and G. Decker, “Nanosecond x-ray pictures recorded with a pulsed channel plate”, Review of Scientific Instruments 47, 88–89 (1976) https://doi.org/10.1063/1.1134499

    Article  Google Scholar 

  36. Zhaojun Nie, Ran An, Joseph E. Hayward, Thomas J. Farrell, Qiyin Fang, “Hyperspectral fluorescence lifetime imaging for optical biopsy,” Journal of Biomedical Optics 18 (9):096001, 2013, https://doi.org/10.1117/1.JBO.18.9.096001

    Article  CAS  PubMed  Google Scholar 

  37. M. Nisoli and G. Sansone, “New frontiers in attosecond science,” Progress in Quantum Electronics, vol. 33, no. 1, pp. 17–59, 2009.

    Article  CAS  Google Scholar 

  38. Osterlund, E.J., Hirmiz, N., Tardif, C., Andrews, D.W. (2019). Rapid Imaging of BCL-2 Family Interactions in Live Cells Using FLIM-FRET. In: Gavathiotis, E. (eds) BCL-2 Family Proteins. Methods in Molecular Biology, vol 1877. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8861-7_19

  39. Palubiak, D.; El-Desouki, M.; Marinov, O.; Deen, M.J.; Fang, Q. High-speed, single-photon avalanche-photodiode imager for biomedical applications. IEEE Sens. J. 2011, 11, 2401–2412.

    Article  Google Scholar 

  40. https://photron.com/pharsighted/, Access on April 7, 2023

  41. Yannick Salamin, Ping Ma, Benedikt Baeuerle, Alexandros Emboras, Yuriy Fedoryshyn, Wolfgang Heni, Bojun Cheng, Arne Josten, and Juerg Leuthold, 100 GHz Plasmonic Photodetector, ACS Photonics 2018 5 (8), 3291–3297, https://doi.org/10.1021/acsphotonics.8b00525

    Article  CAS  Google Scholar 

  42. Villa F, Severini F, Madonini F, Zappa F. SPADs and SiPMs Arrays for Long-Range High-Speed Light Detection and Ranging (LiDAR). Sensors. 2021; 21(11):3839. https://doi.org/10.3390/s21113839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tiwari, V., Sutton, M.A. & McNeill, S.R. Assessment of High Speed Imaging Systems for 2D and 3D Deformation Measurements: Methodology Development and Validation. Exp Mech 47, 561–579 (2007). https://doi.org/10.1007/s11340-006-9011-y

    Article  Google Scholar 

  44. Anthony Tsikouras, Pietro Peronio, Ivan Rech, Nehad Hirmiz, M. Jamal Deen, and Qiyin Fang, “Characterization of SPAD Array for Multifocal High-Content Screening Applications,” Photonics 3(4):56, 2016; https://doi.org/10.3390/photonics3040056

  45. Anthony Tsikouras, Jin Ning, Sandy Ng, Richard Berman, David W. Andrews, and Qiyin Fang, “Streak camera crosstalk reduction using a multiple delay optical fiber bundle,” Opt. Lett. 37, 250–252 (2012)

    Article  PubMed  Google Scholar 

  46. Urayama, P., Zhong, W., Beamish, J. et al. A UV–Visible–NIR fluorescence lifetime imaging microscope for laser-based biological sensing with picosecond resolution. Appl Phys B 76, 483–496 (2003). https://doi.org/10.1007/s00340-003-1152-4

    Article  CAS  Google Scholar 

  47. A. Varma, A.S. Mukasyan, S. Hwang, Dynamics of self-propagating reactions in heterogeneous media: experiments and model, Chemical Engineering Science, 56(4): 1459–1466, 2001, https://doi.org/10.1016/S0009-2509(00)00371-7.

    Article  CAS  Google Scholar 

  48. Frederick J. Wallace (1963) Fiber Optic Endoscopy, J. Urology, 90(3):324–334, https://doi.org/10.1016/S0022-5347(17)64414-8

    Article  CAS  Google Scholar 

  49. Wu, J., Ji, N. & Tsia, K.K. Speed scaling in multiphoton fluorescence microscopy. Nat. Photon. 15, 800–812 (2021). https://doi.org/10.1038/s41566-021-00881-0

    Article  CAS  Google Scholar 

  50. Xue Y, Browne AW, Tang WC, Delgado J, McLelland BT, Nistor G, Chen JT, Chew K, Lee N, Keirstead HS and Seiler MJ (2021) Retinal Organoids Long-Term Functional Characterization Using Two-Photon Fluorescence Lifetime and Hyperspectral Microscopy. Front. Cell. Neurosci. 15:796903. https://doi.org/10.3389/fncel.2021.796903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ye Yuan, Thanassis Papaioannou, and Qiyin Fang, “Single-shot acquisition of time-resolved fluorescence spectra using a multiple delay optical fiber bundle,” Opt. Lett. 33, 791–793 (2008)

    Article  PubMed  Google Scholar 

  52. Mizeret, Jérôme, Thomas Stepinac, Marc Hansroul, André Studzinski, Hubert van den Bergh, and Georges Wagnières, “Instrumentation for real-time fluorescence lifetime imaging in endoscopy.” Review of Scientific Instruments 70(12): 4689–4701 (1999).

    Google Scholar 

  53. Nehad Hirmiz, Anthony Tsikouras, Elizabeth J. Osterlund, Morgan Richards, David W. Andrews, and Qiyin Fang, “Cross-talk reduction in a multiplexed synchroscan streak camera with simultaneous calibration,” Opt. Express. 27, 22602–22614, (2019). https://doi.org/10.1364/OE.27.022602

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiyin Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fang, Q., Richards, M., Wang, Y. (2024). Sampling-Based Two-Dimensional Temporal Imaging. In: Liang, J. (eds) Coded Optical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-031-39062-3_24

Download citation

Publish with us

Policies and ethics