Skip to main content

Machine Learning Applied to Speech Recordings for Parkinson’s Disease Recognition

  • Conference paper
  • First Online:
Deep Learning Theory and Applications (DeLTA 2023)

Abstract

Parkinson’s disease is a common neurological condition that occurs when dopamine production in the brain decreases significantly due to the degeneration of neurons in an area called the substantia nigra. One of its characteristics is the slow and gradual onset of symptoms, which are varied and include tremors at rest, rigidity, and slow speech. Voice changes are very common among patients, so analysis of voice recordings could be a valuable tool for early diagnosis of the disease. This study proposes an approach that compares different Machine Learning models for the diagnosis of the disease through the use of vocal recordings of the vowel a made by both healthy and sick patients and the identification of the subset of the most significant features The experiments were conducted on a data set available on the UCI repository, which collects 756 different recordings. The results obtained are very encouraging, reaching an F-score of 95%, which demonstrates the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://urly.it/3t259.

References

  1. Al Daoud, E.: Comparison between XGBoost, lightGBM and CatBoost using a home credit dataset. Int. J. Comput. Inf. Eng. 13(1), 6–10 (2019)

    Google Scholar 

  2. Aversano, L., et al.: Thyroid disease treatment prediction with machine learning approaches. Procedia Comput. Sci. 192, 1031–1040 (2021). https://doi.org/10.1016/j.procs.2021.08.106, https://www.sciencedirect.com/science/article/pii/S1877050921015945. knowledge-Based and Intelligent Information and Engineering Systems: Proceedings of the 25th International Conference KES2021

  3. Aversano, L., Bernardi, M.L., Cimitile, M., Iammarino, M., Montano, D., Verdone, C.: A machine learning approach for early detection of parkinson’s disease using acoustic traces. In: 2022 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS), pp. 1–8. IEEE (2022)

    Google Scholar 

  4. Aversano, L., Bernardi, M.L., Cimitile, M., Iammarino, M., Montano, D., Verdone, C.: Using machine learning for early prediction of heart disease. In: 2022 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS), pp. 1–8 (2022). https://doi.org/10.1109/EAIS51927.2022.9787720

  5. Aversano, L., Bernardi, M.L., Cimitile, M., Iammarino, M., Verdone, C.: Early detection of Parkinson’s disease using spiral test and echo state networks. In: 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2022)

    Google Scholar 

  6. Aversano, L., Bernardi, M.L., Cimitile, M., Iammarino, M., Verdone, C.: An enhanced UNet variant for effective lung cancer detection. In: 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2022). https://doi.org/10.1109/IJCNN55064.2022.9892757

  7. Aversano, L., Bernardi, M.L., Cimitile, M., Pecori, R.: Early detection of Parkinson disease using deep neural networks on gait dynamics. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2020). https://doi.org/10.1109/IJCNN48605.2020.9207380

  8. Boersma, P.: Praat: doing phonetics by computer (2007). http://www.praat.org/

  9. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  10. Chen, T., et al.: Xgboost: extreme gradient boosting. R package version 0.4-2 1(4), 1–4 (2015)

    Google Scholar 

  11. Cutler, A., Cutler, D.R., Stevens, J.R.: Random forests. ensemble machine learning: methods and applications, pp. 157–175 (2012)

    Google Scholar 

  12. Erdogdu Sakar, B., Serbes, G., Sakar, C.O.: Analyzing the effectiveness of vocal features in early telediagnosis of parkinson’s disease. PLoS ONE 12(8), e0182428 (2017)

    Article  Google Scholar 

  13. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63, 3–42 (2006)

    Article  MATH  Google Scholar 

  16. Govindu, A., Palwe, S.: Early detection of Parkinson’s disease using machine learning. Procedia Comput. Sci. 218, 249–261 (2023). https://doi.org/10.1016/j.procs.2023.01.007, https://www.sciencedirect.com/science/article/pii/S1877050923000078. international Conference on Machine Learning and Data Engineering

  17. Little \(^\ast \), M.A., McSharry, P.E., Hunter, E.J., Spielman, J., Ramig, L.O.: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Trans. Biomed. Eng. 56(4), 1015–1022 (2009). https://doi.org/10.1109/TBME.2008.2005954

  18. Magee, J.F.: Decision Trees for Decision Making. Harvard Business Review, Brighton (1964)

    Google Scholar 

  19. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015)

  20. Peker, M.: A decision support system to improve medical diagnosis using a combination of k-medoids clustering based attribute weighting and svm. J. Med. Syst. 40(5), 116 (2016)

    Article  Google Scholar 

  21. Peterson, L.E.: K-nearest neighbor. Scholarpedia 4(2), 1883 (2009)

    Article  Google Scholar 

  22. Sakar, C.O., et al.: A comparative analysis of speech signal processing algorithms for Parkinson’s disease classification and the use of the tunable q-factor wavelet transform. Appl. Soft Comput. 74, 255–263 (2019)

    Article  Google Scholar 

  23. Shukla, L.C., Schulze, J., Farlow, J., Pankratz, N.D., Wojcieszek, J., Foroud, T.: Parkinson disease overview. GeneReviews®[Internet] (2019)

    Google Scholar 

  24. Sidey-Gibbons, J.A., Sidey-Gibbons, C.J.: Machine learning in medicine: a practical introduction. BMC Med. Res. Methodol. 19, 1–18 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lerina Aversano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aversano, L., Bernardi, M.L., Cimitile, M., Iammarino, M., Madau, A., Verdone, C. (2023). Machine Learning Applied to Speech Recordings for Parkinson’s Disease Recognition. In: Conte, D., Fred, A., Gusikhin, O., Sansone, C. (eds) Deep Learning Theory and Applications. DeLTA 2023. Communications in Computer and Information Science, vol 1875. Springer, Cham. https://doi.org/10.1007/978-3-031-39059-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39059-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39058-6

  • Online ISBN: 978-3-031-39059-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics