Skip to main content

Pretargeted Radiopharmaceutical Therapy

  • Chapter
  • First Online:
Radiopharmaceutical Therapy

Abstract

Radioimmunotherapy (RIT) has long stood as a promising approach to radiopharmaceutical therapy (RPT). However, the relatively slow pharmacokinetic profile of full-length radioimmunoconjugates can lead to toxic radiation doses to off-target organs. In pretargeted radioimmunotherapy (PRIT), the antibody and the radionuclide are decoupled, the former is administered hours to days ahead of the latter, and the two components undergo a selective ligation at the tumor site. Several approaches to PRIT have been developed over the past three decades, each based on a pair of moieties—a “molecular couple”—that react with one another in vivo with high specificity and affinity. All PRIT strategies follow the same general steps. First, the antibody bearing one half of the molecular couple is administered. Then, after the antibody has cleared from the blood and non-target organs, a radiolabeled variant of the complementary half of the molecular couple is injected. This radioligand, by design a small molecule, travels through the body quickly and either undergoes a ligation with the immunoconjugate at the tumor or is rapidly excreted. This approach is designed to deliver high radiation doses to tumor tissue while simultaneously minimizing the irradiation of healthy organs. In this chapter, we will provide examples of the use of in vivo pretargeting in nuclear medicine and discuss the most common approaches to in vivo pretargeting, including strategies based on streptavidin and biotin, bispecific antibodies, complementary oligonucleotides, and biorthogonal click chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rondon A, Rouanet J, Degoul F. Radioimmunotherapy in oncology: overview of the last decade clinical trials. Cancers (Basel). 2021;13(21) https://doi.org/10.3390/cancers13215570.

  2. Wei W, Rosenkrans ZT, Liu J, Huang G, Luo Q-Y, Cai W. ImmunoPET: concept, design, and applications. Chem Rev. 2020;120(8):3787–851. https://doi.org/10.1021/acs.chemrev.9b00738.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Jallinoja VIJ, Houghton JL. Current landscape in clinical pretargeted radioimmunoimaging and therapy. J Nucl Med. 2021;62(9):1200–6. https://doi.org/10.2967/jnumed.120.260687.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Pereira PMR, Mandleywala K, Ragupathi A, Carter LM, Goos J, Janjigian YY, et al. Temporal modulation of HER2 membrane availability increases pertuzumab uptake and pretargeted molecular imaging of gastric tumors. J Nucl Med. 2019;60(11):1569–78. https://doi.org/10.2967/jnumed.119.225813.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Sinitsyn VV, Mamontova AG, Checkneva YY, Shnyra AA, Domogatsky SP. Rapid blood clearance of biotinylated IgG after infusion of avidin. J Nucl Med. 1989;30(1):66–9.

    PubMed  CAS  Google Scholar 

  6. Paganelli G, Pervez S, Siccardi AG, Rowlinson G, Deleide G, Chiolerio F, et al. Intraperitoneal radio-localization of tumors pre-targeted by biotinylated monoclonal antibodies. Int J Cancer. 1990;45(6):1184–9. https://doi.org/10.1002/ijc.2910450632.

    Article  PubMed  CAS  Google Scholar 

  7. Kobayashi H, Sakahara H, Hosono M, Yao ZS, Toyama S, Endo K, et al. Improved clearance of radiolabeled biotinylated monoclonal antibody following the infusion of avidin as a “chase” without decreased accumulation in the target tumor. J Nucl Med. 1994;35(10):1677–84.

    PubMed  CAS  Google Scholar 

  8. Kalofonos HP, Rusckowski M, Siebecker DA, Sivolapenko GB, Snook D, Lavender JP, et al. Imaging of tumor in patients with indium-111-labeled biotin and streptavidin-conjugated antibodies: preliminary communication. J Nucl Med. 1990;31(11):1791–6.

    PubMed  CAS  Google Scholar 

  9. Paganelli G, Magnani P, Zito F, Villa E, Sudati F, Lopalco L, et al. Three-step monoclonal antibody tumor targeting in carcinoembryonic antigen-positive patients. Cancer Res. 1991;51(21):5960–6.

    PubMed  CAS  Google Scholar 

  10. Cremonesi M, Ferrari M, Chinol M, Stabin MG, Grana C, Prisco G, et al. Three-step radioimmunotherapy with yttrium-90 biotin: dosimetry and pharmacokinetics in cancer patients. Eur J Nucl Med. 1999;26(2):110–20. https://doi.org/10.1007/s002590050366.

    Article  PubMed  CAS  Google Scholar 

  11. Paganelli G, Grana C, Chinol M, Cremonesi M, De Cicco C, De Braud F, et al. Antibody-guided three-step therapy for high grade glioma with yttrium-90 biotin. Eur J Nucl Med. 1999;26(4):348–57. https://doi.org/10.1007/s002590050397.

    Article  PubMed  CAS  Google Scholar 

  12. Breitz HB, Weiden PL, Beaumier PL, Axworthy DB, Seiler C, Su FM, et al. Clinical optimization of pretargeted radioimmunotherapy with antibody-streptavidin conjugate and 90Y-DOTA-biotin. J Nucl Med. 2000;41(1):131–40.

    PubMed  CAS  Google Scholar 

  13. Knox SJ, Goris ML, Tempero M, Weiden PL, Gentner L, Breitz H, et al. Phase II trial of yttrium-90-DOTA-biotin pretargeted by NR-LU-10 antibody/streptavidin in patients with metastatic colon cancer. Clin Cancer Res. 2000;6(2):406–14.

    PubMed  CAS  Google Scholar 

  14. Paganelli G, Bartolomei M, Ferrari M, Cremonesi M, Broggi G, Maira G, et al. Pre-targeted locoregional radioimmunotherapy with 90Y-biotin in glioma patients: phase I study and preliminary therapeutic results. Cancer Biother Radiopharm. 2001;16(3):227–35. https://doi.org/10.1089/10849780152389410.

    Article  PubMed  CAS  Google Scholar 

  15. Weiden PL, Breitz HB. Pretargeted radioimmunotherapy (PRIT) for treatment of non-Hodgkin’s lymphoma (NHL). Crit Rev Oncol Hematol. 2001;40(1):37–51. https://doi.org/10.1016/s1040-8428(01)00133-0.

    Article  PubMed  CAS  Google Scholar 

  16. Grana C, Chinol M, Robertson C, Mazzetta C, Bartolomei M, De Cicco C, et al. Pretargeted adjuvant radioimmunotherapy with yttrium-90-biotin in malignant glioma patients: a pilot study. Br J Cancer. 2002;86(2):207–12. https://doi.org/10.1038/sj.bjc.6600047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Forero A, Weiden PL, Vose JM, Knox SJ, LoBuglio AF, Hankins J, et al. Phase 1 trial of a novel anti-CD20 fusion protein in pretargeted radioimmunotherapy for B-cell non-Hodgkin lymphoma. Blood. 2004;104(1):227–36. https://doi.org/10.1182/blood-2003-09-3284.

    Article  PubMed  CAS  Google Scholar 

  18. Shen S, Forero A, LoBuglio AF, Breitz H, Khazaeli MB, Fisher DR, et al. Patient-specific dosimetry of pretargeted radioimmunotherapy using CC49 fusion protein in patients with gastrointestinal malignancies. J Nucl Med. 2005;46(4):642–51.

    PubMed  CAS  Google Scholar 

  19. Sharkey RM, van Rij CM, Karacay H, Rossi EA, Frielink C, Regino C, et al. A new tri-fab bispecific antibody for pretargeting Trop-2-expressing epithelial cancers. J Nucl Med. 2012;53(10):1625–32. https://doi.org/10.2967/jnumed.112.104364.

    Article  PubMed  CAS  Google Scholar 

  20. van Rij CM, Frielink C, Goldenberg DM, Sharkey RM, Lütje S, McBride WJ, et al. Pretargeted radioimmunotherapy of prostate cancer with an anti-TROP-2×anti-HSG bispecific antibody and a (177)Lu-labeled peptide. Cancer Biother Radiopharm. 2014;29(8):323–9. https://doi.org/10.1089/cbr.2014.1660.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Santich BH, Cheal SM, Ahmed M, McDevitt MR, Ouerfelli O, Yang G, et al. A self-assembling and disassembling (SADA) bispecific antibody (BsAb) platform for curative two-step pretargeted radioimmunotherapy. Clin Cancer Res. 2021;27(2):532–41. https://doi.org/10.1158/1078-0432.Ccr-20-2150.

    Article  PubMed  CAS  Google Scholar 

  22. Stickney DR, Anderson LD, Slater JB, Ahlem CN, Kirk GA, Schweighardt SA, et al. Bifunctional antibody: a binary radiopharmaceutical delivery system for imaging colorectal carcinoma. Cancer Res. 1991;51(24):6650–5.

    PubMed  CAS  Google Scholar 

  23. Le Doussal JM, Chetanneau A, Gruaz-Guyon A, Martin M, Gautherot E, Lehur PA, et al. Bispecific monoclonal antibody-mediated targeting of an indium-111-labeled DTPA dimer to primary colorectal tumors: pharmacokinetics, biodistribution, scintigraphy and immune response. J Nucl Med. 1993;34(10):1662–71.

    PubMed  Google Scholar 

  24. Barbet J, Peltier P, Bardet S, Vuillez JP, Bachelot I, Denet S, et al. Radioimmunodetection of medullary thyroid carcinoma using indium-111 bivalent hapten and anti-CEA x anti-DTPA-indium bispecific antibody. J Nucl Med. 1998;39(7):1172–8.

    PubMed  CAS  Google Scholar 

  25. Kraeber-Bodéré F, Bardet S, Hoefnagel CA, Vieira MR, Vuillez JP, Murat A, et al. Radioimmunotherapy in medullary thyroid cancer using bispecific antibody and iodine 131-labeled bivalent hapten: preliminary results of a phase I/II clinical trial. Clin Cancer Res. 1999;5(10 Suppl):3190s–8s.

    PubMed  Google Scholar 

  26. Kraeber-Bodéré F, Faivre-Chauvet A, Ferrer L, Vuillez JP, Brard PY, Rousseau C, et al. Pharmacokinetics and dosimetry studies for optimization of anti-carcinoembryonic antigen x anti-hapten bispecific antibody-mediated pretargeting of Iodine-131-labeled hapten in a phase I radioimmunotherapy trial. Clin Cancer Res. 2003;9(10 Pt 2):3973s–81s.

    PubMed  Google Scholar 

  27. Kraeber-Bodéré F, Rousseau C, Bodet-Milin C, Ferrer L, Faivre-Chauvet A, Campion L, et al. Targeting, toxicity, and efficacy of 2-step, pretargeted radioimmunotherapy using a chimeric bispecific antibody and 131I-labeled bivalent hapten in a phase I optimization clinical trial. J Nucl Med. 2006;47(2):247–55.

    PubMed  Google Scholar 

  28. Chatal JF, Campion L, Kraeber-Bodéré F, Bardet S, Vuillez JP, Charbonnel B, et al. Survival improvement in patients with medullary thyroid carcinoma who undergo pretargeted anti-carcinoembryonic-antigen radioimmunotherapy: a collaborative study with the French Endocrine Tumor Group. J Clin Oncol. 2006;24(11):1705–11. https://doi.org/10.1200/jco.2005.04.4917.

    Article  PubMed  CAS  Google Scholar 

  29. Aarts F, Boerman OC, Sharkey RM, Hendriks T, Chang CH, McBride WJ, et al. Pretargeted radioimmunoscintigraphy in patients with primary colorectal cancer using a bispecific anticarcinoembryonic antigen CEA X anti-di-diethylenetriaminepentaacetic acid F(ab’)2 antibody. Cancer. 2010;116(4 Suppl):1111–7. https://doi.org/10.1002/cncr.24799.

    Article  PubMed  CAS  Google Scholar 

  30. Salaun PY, Campion L, Bournaud C, Faivre-Chauvet A, Vuillez JP, Taieb D, et al. Phase II trial of anticarcinoembryonic antigen pretargeted radioimmunotherapy in progressive metastatic medullary thyroid carcinoma: biomarker response and survival improvement. J Nucl Med. 2012;53(8):1185–92. https://doi.org/10.2967/jnumed.111.101865.

    Article  PubMed  CAS  Google Scholar 

  31. Schoffelen R, Boerman OC, Goldenberg DM, Sharkey RM, van Herpen CM, Franssen GM, et al. Development of an imaging-guided CEA-pretargeted radionuclide treatment of advanced colorectal cancer: first clinical results. Br J Cancer. 2013;109(4):934–42. https://doi.org/10.1038/bjc.2013.376.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Schoffelen R, Woliner-van der Weg W, Visser EP, Goldenberg DM, Sharkey RM, McBride WJ, et al. Predictive patient-specific dosimetry and individualized dosing of pretargeted radioimmunotherapy in patients with advanced colorectal cancer. Eur J Nucl Med Mol Imaging. 2014;41(8):1593–602. https://doi.org/10.1007/s00259-014-2742-6.

    Article  PubMed  CAS  Google Scholar 

  33. Kraeber-Bodéré F, Rousseau C, Bodet-Milin C, Frampas E, Faivre-Chauvet A, Rauscher A, et al. A pretargeting system for tumor PET imaging and radioimmunotherapy. Front Pharmacol. 2015;6:54. https://doi.org/10.3389/fphar.2015.00054.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Bodet-Milin C, Ferrer L, Rauscher A, Masson D, Rbah-Vidal L, Faivre-Chauvet A, et al. Pharmacokinetics and dosimetry studies for optimization of pretargeted radioimmunotherapy in CEA-expressing advanced lung cancer patients. Front Med (Lausanne). 2015;2:84. https://doi.org/10.3389/fmed.2015.00084.

    Article  PubMed  Google Scholar 

  35. Bodet-Milin C, Faivre-Chauvet A, Carlier T, Rauscher A, Bourgeois M, Cerato E, et al. Immuno-PET using anticarcinoembryonic antigen bispecific antibody and 68Ga-labeled peptide in metastatic medullary thyroid carcinoma: clinical optimization of the pretargeting parameters in a first-in-human trial. J Nucl Med. 2016;57(10):1505–11. https://doi.org/10.2967/jnumed.116.172221.

    Article  PubMed  CAS  Google Scholar 

  36. Rousseau C, Goldenberg DM, Colombié M, Sébille JC, Meingan P, Ferrer L, et al. Initial clinical results of a novel immuno-PET theranostic probe in human epidermal growth factor receptor 2-negative breast cancer. J Nucl Med. 2020;61(8):1205–11. https://doi.org/10.2967/jnumed.119.236000.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Touchefeu Y, Bailly C, Frampas E, Eugène T, Rousseau C, Bourgeois M, et al. Promising clinical performance of pretargeted immuno-PET with anti-CEA bispecific antibody and gallium-68-labelled IMP-288 peptide for imaging colorectal cancer metastases: a pilot study. Eur J Nucl Med Mol Imaging. 2021;48(3):874–82. https://doi.org/10.1007/s00259-020-04989-3.

    Article  PubMed  CAS  Google Scholar 

  38. Bodet-Milin C, Bailly C, Touchefeu Y, Frampas E, Bourgeois M, Rauscher A, et al. Clinical results in medullary thyroid carcinoma suggest high potential of pretargeted immuno-PET for tumor imaging and theranostic approaches. Front Med (Lausanne). 2019;6:124. https://doi.org/10.3389/fmed.2019.00124.

    Article  PubMed  Google Scholar 

  39. Liu G, Mang’era K, Liu N, Gupta S, Rusckowski M, Hnatowich DJ. Tumor pretargeting in mice using 99mTc-labeled morpholino, a DNA analog. J Nucl Med. 2002;43(3):384–91.

    PubMed  CAS  Google Scholar 

  40. Liu G, Dou S, Mardirossian G, He J, Zhang S, Liu X, et al. Successful radiotherapy of tumor in pretargeted mice by 188Re-radiolabeled phosphorodiamidate morpholino oligomer, a synthetic DNA analogue. Clin Cancer Res. 2006;12(16):4958–64. https://doi.org/10.1158/1078-0432.Ccr-06-0844.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Liu G, Dou S, Liu Y, Wang Y, Rusckowski M, Hnatowich DJ. 90Y labeled phosphorodiamidate morpholino oligomer for pretargeting radiotherapy. Bioconjug Chem. 2011;22(12):2539–45. https://doi.org/10.1021/bc200366t.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Leonidova A, Foerster C, Zarschler K, Schubert M, Pietzsch H-J, Steinbach J, et al. In vivo demonstration of an active tumor pretargeting approach with peptide nucleic acid bioconjugates as complementary system. Chem Sci. 2015;6(10):5601–16. https://doi.org/10.1039/C5SC00951K.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Altai M, Westerlund K, Velletta J, Mitran B, Honarvar H, Karlström AE. Evaluation of affibody molecule-based PNA-mediated radionuclide pretargeting: development of an optimized conjugation protocol and 177Lu labeling. Nucl Med Biol. 2017;54:1–9. https://doi.org/10.1016/j.nucmedbio.2017.07.003.

    Article  PubMed  CAS  Google Scholar 

  44. Westerlund K, Altai M, Mitran B, Konijnenberg M, Oroujeni M, Atterby C, et al. Radionuclide therapy of HER2-expressing human xenografts using affibody-based peptide nucleic acid-mediated pretargeting: in vivo proof of principle. J Nucl Med. 2018;59(7):1092–8. https://doi.org/10.2967/jnumed.118.208348.

    Article  PubMed  CAS  Google Scholar 

  45. Vorobyeva A, Westerlund K, Mitran B, Altai M, Rinne S, Sörensen J, et al. Development of an optimal imaging strategy for selection of patients for affibody-based PNA-mediated radionuclide therapy. Sci Rep. 2018;8(1):9643. https://doi.org/10.1038/s41598-018-27886-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Tano H, Oroujeni M, Vorobyeva A, Westerlund K, Liu Y, Xu T, et al. Comparative evaluation of novel 177Lu-labeled PNA probes for affibody-mediated PNA-based pretargeting. Cancers (Basel). 2021;13(3) https://doi.org/10.3390/cancers13030500.

  47. Oroujeni M, Tano H, Vorobyeva A, Liu Y, Vorontsova O, Xu T, et al. Affibody-mediated PNA-based pretargeted cotreatment improves survival of trastuzumab-treated mice bearing HER2-expressing xenografts. J Nucl Med. 2022;63(7):1046–51. https://doi.org/10.2967/jnumed.121.262123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Rossin R, Verkerk PR, van den Bosch SM, Vulders RC, Verel I, Lub J, et al. In vivo chemistry for pretargeted tumor imaging in live mice. Angew Chem Int Ed Eng. 2010;49(19):3375–8. https://doi.org/10.1002/anie.200906294.

    Article  CAS  Google Scholar 

  49. Rondon A, Degoul F. Antibody pretargeting based on bioorthogonal click chemistry for cancer imaging and targeted radionuclide therapy. Bioconjug Chem. 2020;31(2):159–73. https://doi.org/10.1021/acs.bioconjchem.9b00761.

    Article  PubMed  CAS  Google Scholar 

  50. Houghton JL, Membreno R, Abdel-Atti D, Cunanan KM, Carlin S, Scholz WW, et al. Establishment of the in vivo efficacy of pretargeted radioimmunotherapy utilizing inverse electron demand Diels-Alder click chemistry. Mol Cancer Ther. 2017;16(1):124–33. https://doi.org/10.1158/1535-7163.Mct-16-0503.

    Article  PubMed  CAS  Google Scholar 

  51. Rondon A, Schmitt S, Briat A, Ty N, Maigne L, Quintana M, et al. Pretargeted radioimmunotherapy and SPECT imaging of peritoneal carcinomatosis using bioorthogonal click chemistry: probe selection and first proof-of-concept. Theranostics. 2019;9(22):6706–18. https://doi.org/10.7150/thno.35461.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Shah MA, Zhang X, Rossin R, Robillard MS, Fisher DR, Bueltmann T, et al. Metal-free cycloaddition chemistry driven pretargeted radioimmunotherapy using α-particle radiation. Bioconjug Chem. 2017;28(12):3007–15. https://doi.org/10.1021/acs.bioconjchem.7b00612.

    Article  PubMed  CAS  Google Scholar 

  53. Poty S, Carter LM, Mandleywala K, Membreno R, Abdel-Atti D, Ragupathi A, et al. Leveraging bioorthogonal click chemistry to improve 225Ac-radioimmunotherapy of pancreatic ductal adenocarcinoma. Clin Cancer Res. 2019;25(2):868–80. https://doi.org/10.1158/1078-0432.Ccr-18-1650.

    Article  PubMed  CAS  Google Scholar 

  54. Keinänen O, Brennan JM, Membreno R, Fung K, Gangangari K, Dayts EJ, et al. Dual radionuclide theranostic pretargeting. Mol Pharm. 2019;16(10):4416–21. https://doi.org/10.1021/acs.molpharmaceut.9b00746.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Keinänen O, Fung K, Brennan JM, Zia N, Harris M, van Dam E, et al. Harnessing 64Cu/67Cu for a theranostic approach to pretargeted radioimmunotherapy. Proc Natl Acad Sci U S A. 2020;117(45):28316–27. https://doi.org/10.1073/pnas.2009960117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Mandikian D, Rafidi H, Adhikari P, Venkatraman P, Nazarova L, Fung G, et al. Site-specific conjugation allows modulation of click reaction stoichiometry for pretargeted SPECT imaging. MAbs. 2018;10(8):1269–80. https://doi.org/10.1080/19420862.2018.1521132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Ferreira VFC, Oliveira BL, D’Onofrio A, Farinha CM, Gano L, Paulo A, et al. In vivo pretargeting based on cysteine-selective antibody modification with IEDDA bioorthogonal handles for click chemistry. Bioconjug Chem. 2021;32(1):121–32. https://doi.org/10.1021/acs.bioconjchem.0c00551.

    Article  PubMed  CAS  Google Scholar 

  58. Cook BE, Membreno R, Zeglis BM. Dendrimer scaffold for the amplification of in vivo pretargeting ligations. Bioconjug Chem. 2018;29(8):2734–40. https://doi.org/10.1021/acs.bioconjchem.8b00385.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Cook BE, Adumeau P, Membreno R, Carnazza KE, Brand C, Reiner T, et al. Pretargeted PET imaging using a site-specifically labeled immunoconjugate. Bioconjug Chem. 2016;27(8):1789–95. https://doi.org/10.1021/acs.bioconjchem.6b00235.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Maitz CA, Delaney S, Cook BE, Genady AR, Hoerres R, Kuchuk M, et al. Pretargeted PET of osteodestructive lesions in dogs. Mol Pharm. 2022;19(9):3153–62. https://doi.org/10.1021/acs.molpharmaceut.2c00220.

    Article  PubMed  CAS  Google Scholar 

  61. Masson E, Ling X, Joseph R, Kyeremeh-Mensah L, Lu X. Cucurbituril chemistry: a tale of supramolecular success. RSC Adv. 2012;2(4):1213–47. https://doi.org/10.1039/C1RA00768H.

    Article  CAS  Google Scholar 

  62. Assaf KI, Nau WM. Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem Soc Rev. 2015;44(2):394–418. https://doi.org/10.1039/C4CS00273C.

    Article  PubMed  CAS  Google Scholar 

  63. Barrow SJ, Kasera S, Rowland MJ, del Barrio J, Scherman OA. Cucurbituril-based molecular recognition. Chem Rev. 2015;115(22):12320–406. https://doi.org/10.1021/acs.chemrev.5b00341.

    Article  PubMed  CAS  Google Scholar 

  64. Strebl MG, Yang J, Isaacs L, Hooker JM. Adamantane/cucurbituril: a potential pretargeted imaging strategy in immuno-PET. Mol Imaging. 2018;17:1536012118799838. https://doi.org/10.1177/1536012118799838.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Jallinoja VIJ, Carney BD, Bhatt K, Abbriano CH, Schlyer DJ, Yazaki PJ, et al. Investigation of copper-64-based host-guest chemistry pretargeted positron emission tomography. Mol Pharm. 2022;19(7):2268–78. https://doi.org/10.1021/acs.molpharmaceut.2c00102.

    Article  PubMed  CAS  Google Scholar 

  66. Jallinoja VIJ, Carney BD, Zhu M, Bhatt K, Yazaki PJ, Houghton JL. Cucurbituril-ferrocene: host-guest based pretargeted positron emission tomography in a xenograft model. Bioconjug Chem. 2021;32(8):1554–8. https://doi.org/10.1021/acs.bioconjchem.1c00280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Richard M, Truillet C, Tran VL, Liu H, Porte K, Audisio D, et al. New fluorine-18 pretargeting PET imaging by bioorthogonal chlorosydnone-cycloalkyne click reaction. Chem Commun (Camb). 2019;55(70):10400–3. https://doi.org/10.1039/c9cc05486c.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian M. Zeglis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keinänen, O.M., Zeglis, B.M. (2023). Pretargeted Radiopharmaceutical Therapy. In: Bodei, L., Lewis, J.S., Zeglis, B.M. (eds) Radiopharmaceutical Therapy. Springer, Cham. https://doi.org/10.1007/978-3-031-39005-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39005-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39004-3

  • Online ISBN: 978-3-031-39005-0

  • eBook Packages: Biomedical and Life Sciences

Publish with us

Policies and ethics