Skip to main content

Case Study #3: Antibody Fragments in Radiopharmaceutical Therapy

  • Chapter
  • First Online:
Radiopharmaceutical Therapy

Abstract

Antibodies are widely used as versatile biological tools in cancer therapeutics. In radiopharmaceutical therapy, they have been extensively exploited as vehicles for the delivery of cytotoxic radionuclide payloads for killing tumor cells. However, their success has been impeded by high toxicity profiles due to their long circulatory half-life, which produces high radiation doses to healthy non-target tissues. This issue has prompted the development of smaller engineered antibody fragments that bind to the same epitopes as their parent antibodies but with increased pharmacokinetic profiles, deeper tumor penetration, and better safety profiles. Antibody fragments have produced promising results as vectors for radiopharmaceutical therapy, with an approved fragment-based radiotherapeutic in China and an increasing number of ongoing clinical trials. Nonetheless, concerns surrounding the stability, unfavorable tissue distribution, and reduced binding affinity of radiolabeled antibody fragments have inhibited their widespread application in radiopharmaceutical therapy. In response, a great deal of effort has been dedicated to optimize the pharmacokinetics of antibody fragments (especially reducing their retention in the kidneys) and improving the radiochemical techniques used to synthesize them. In this chapter, we explore the application of antibody fragments for radiopharmaceutical therapy, their methods of production, and their potential for clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong KJ, Baidoo KE, Nayak TK, Garmestani K, Brechbiel MW, Milenic DE. In vitro and in vivo pre-clinical analysis of a F(ab′)2 fragment of panitumumab for molecular imaging and therapy of HER1-positive cancers. EJNMMI Res. 2011;1(1):1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alibakhshi A, Abarghooi Kahaki F, Ahangarzadeh S, Yaghoobi H, Yarian F, Arezumand R, et al. Targeted cancer therapy through antibody fragments-decorated nanomedicines. J Control Release. 2017;268:323–34.

    Article  CAS  PubMed  Google Scholar 

  3. Tiller KE, Tessier PM. Advances in antibody design. Annu Rev Biomed Eng. 2015;17:191–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu L. Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein Cell. 2018;9(1):15–32.

    Article  CAS  PubMed  Google Scholar 

  5. Maloth KN, Velpula N, Ugrappa S, Kodangal S. Radioisotopes: an overview. Int J Case Rep Image. 2014;5(9):604.

    Article  Google Scholar 

  6. Dekempeneer Y, Keyaerts M, Krasniqi A, Puttemans J, Muyldermans S, Lahoutte T, et al. Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle. Expert Opin Biol Ther. 2016;16(8):1035–47. https://doi.org/10.1080/14712598.2016.1185412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carter LM, Poty S, Sharma SK, Lewis JS. Preclinical optimization of antibody-based radiopharmaceuticals for cancer imaging and radionuclide therapy—model, vector, and radionuclide selection. J Labelled Comp Radiopharm. 2018;61(9):611–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. D’Huyvetter M, Xavier C, Caveliers V, Lahoutte T, Muyldermans S, Devoogdt N. Radiolabeled nanobodies as theranostic tools in targeted radionuclide therapy of cancer. Expert Opin Drug Deliv. 2014;11(12):1939–54.

    Article  PubMed  PubMed Central  Google Scholar 

  9. D’Huyvetter M, Aerts A, Xavier C, Vaneycken I, Devoogdt N, Gijs M, et al. Development of 177Lu-nanobodies for radioimmunotherapy of HER2-positive breast cancer: evaluation of different bifunctional chelators. Contrast Media Mol Imaging. 2012;7(2):254–64.

    Article  PubMed  Google Scholar 

  10. Navarro L, Berdal M, Chérel M, Pecorari F, Gestin JF, Guérard F. Prosthetic groups for radioiodination and astatination of peptides and proteins: a comparative study of five potential bioorthogonal labeling strategies. Bioorg Med Chem. 2019;27(1):167–74.

    Article  CAS  PubMed  Google Scholar 

  11. Bartholomä MD. Radioimmunotherapy of solid tumors: approaches on the verge of clinical application. J Labelled Comp Radiopharm. 2018;61(9):715–26.

    Article  PubMed  Google Scholar 

  12. Debie P, Lafont C, Defrise M, Hansen I, van Willigen DM, van Leeuwen FWB, et al. Size and affinity kinetics of nanobodies influence targeting and penetration of solid tumours. J Control Release. 2020;317:34–42.

    Article  CAS  PubMed  Google Scholar 

  13. Bates A, Power CA. David vs. Goliath: the structure, function, and clinical prospects of antibody fragments. Antibodies. 2019;8(2):28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xenaki KT, Oliveira S, van Bergen en Henegouwen PMP. Antibody or antibody fragments: implications for molecular imaging and targeted therapy of solid tumors. Front Immunol. 2017;8:1287.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kholodenko RV, Kalinovsky DV, Doronin II, Ponomarev ED, Kholodenko IV. Antibody fragments as potential biopharmaceuticals for cancer therapy: success and limitations. Curr Med Chem. 2019;26(3):396–426.

    Article  CAS  PubMed  Google Scholar 

  16. Alonso Martínez LM, Xiques Castillo A, Calzada Falcón VN, Pérez-Malo Cruz M, Leyva Montaña R, Zamora Barrabí M, et al. Development of 90Y-DOTA-nimotuzumab Fab fragment for radioimmunotherapy. J Radioanal Nucl Chem. 2014;302(1):49–56.

    Article  Google Scholar 

  17. Chitneni SK, Koumarianou E, Vaidyanathan G, Zalutsky MR. Observations on the effects of residualization and dehalogenation on the utility of N-succinimidyl ester acylation agents for radioiodination of the internalizing antibody trastuzumab. Molecules. 2019;24(21):3907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. D’Huyvetter M, De Vos J, Xavier C, Pruszynski M, Sterckx YGJ, Massa S, et al. 131I-labeled anti-HER2 camelid sdAb as a theranostic tool in cancer treatment. Clin Cancer Res. 2017;23(21):6616–28.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Massa S, Xavier C, Muyldermans S, Devoogdt N. Emerging site-specific bioconjugation strategies for radioimmunotracer development. Expert Opin Drug Deliv. 2016;13(8):1149–63.

    Article  CAS  PubMed  Google Scholar 

  20. Kitten O, Martineau P. Antibody alternative formats: antibody fragments and new frameworks. Medecine/Sciences. 2019;35(12):1092–7.

    Article  PubMed  Google Scholar 

  21. Chen ZN, Mi L, Xu J, Song F, Zhang Q, Zhang Z, et al. Targeting radioimmunotherapy of hepatocellular carcinoma with iodine (131I) metuximab injection: clinical phase I/II trials. Int J Radiat Oncol Biol Phys. 2006;65(2):435–44.

    Article  CAS  PubMed  Google Scholar 

  22. Rondon A, Rouanet J, Degoul F. Radioimmunotherapy in oncology: overview of the last decade clinical trials. Cancers. 2021;13(21):5570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grünberg J, Novak-Hofer I, Honer M, Zimmermann K, Knogler K, Bläuenstein P, et al. In vivo evaluation of177Lu- and 67/64Cu-labeled recombinant fragments of antibody chCE7 for radioimmunotherapy and PET imaging of L1-CAM-positive tumors. Clin Cancer Res. 2005;11(14):5112–20.

    Article  PubMed  Google Scholar 

  24. Haylock AK, Nilvebrant J, Mortensen A, Velikyan I, Nestor M, Falk R. Generation and evaluation of antibody agents for molecular imaging of CD44v6-expressing cancers. Oncotarget. 2017;8(39):65152–70.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tsai WTK, Wu AM. Aligning physics and physiology: engineering antibodies for radionuclide delivery. J Labelled Comp Radiopharm. 2018;61(9):693–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Olafsen T, Wu AM. Antibody vectors for imaging. Semin Nucl Med. 2010;40(3):167–81.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pandit-Taskar N, O’Donoghue JA, Ruan S, Lyashchenko SK, Carrasquillo JA, Heller G, et al. First-in-human imaging with 89Zr-Df-IAB2M anti-PSMA minibody in patients with metastatic prostate cancer: pharmacokinetics, biodistribution, dosimetry, and lesion uptake. J Nucl Med. 2016;57(12):1858–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hammers C, Songa EB, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–8.

    Article  CAS  PubMed  Google Scholar 

  29. Piramoon M, Khodadust F, Jalal S. BBA - reviews on cancer radiolabeled nanobodies for tumor targeting : from bioengineering to imaging and therapy. BBA – Rev Cancer. 1875;2021(2):188529.

    Google Scholar 

  30. Muyldermans S. A guide to: generation and design of nanobodies. FEBS J. 2021;288(7):2084–102.

    Article  CAS  PubMed  Google Scholar 

  31. Keyaerts M, Xavier C, Heemskerk J, Devoogdt N, Everaert H, Ackaert C, et al. Phase i study of 68Ga-HER2-Nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J Nucl Med. 2016;57(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  32. D’Huyvetter M, De Vos J, Caveliers V, Vaneycken I, Heemskerk J, Duhoux FP, et al. Phase I trial of 131I-GMIB-anti-HER2-VHH1, a new promising candidate for HER2-targeted radionuclide therapy in breast cancer patients. J Nucl Med. 2021;62(8):1097–105.

    Article  PubMed  Google Scholar 

  33. Tchouate Gainkam LO, Caveliers V, Devoogdt N, Vanhove C, Xavier C, Boerman O, et al. Localization, mechanism and reduction of renal retention of technetium-99m labeled epidermal growth factor receptor-specific nanobody in mice. Contrast Media Mol Imaging. 2011;6(2):85–92.

    Article  Google Scholar 

  34. Chigoho DM, Bridoux J, Hernot S. Reducing the renal retention of low- to moderate-molecular-weight radiopharmaceuticals. Curr Opin Chem Biol. 2021;63:219–28.

    Article  CAS  PubMed  Google Scholar 

  35. D’Huyvetter M, Vincke C, Xavier C, Aerts A, Impens N, Baatout S, et al. Targeted radionuclide therapy with a 177Lu-labeled anti-HER2 nanobody. Theranostics. 2014;4(7):708–20.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Harmand TJ, Islam A, Pishesha N, Ploegh HL. Nanobodies as: in vivo, non-invasive, imaging agents. RSC Chem Biol. 2021;2(3):685–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Arslan M, Karadağ D, Kalyoncu S. Protein engineering approaches for antibody fragments: directed evolution and rational design approaches. Turk J Biol. 2019;43(1):1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ferrer-Miralles N, Domingo-Espín J, Corchero J, Vázquez E, Villaverde A. Microbial factories for recombinant pharmaceuticals. Microb Cell Factories. 2009;8:1–8.

    Article  Google Scholar 

  39. Gaciarz A, Khatri NK, Velez-Suberbie ML, Saaranen MJ, Uchida Y, Keshavarz-Moore E, et al. Efficient soluble expression of disulfide bonded proteins in the cytoplasm of Escherichia coli in fed-batch fermentations on chemically defined minimal media. Microb Cell Factories. 2017;16(1):1–12.

    Article  Google Scholar 

  40. Spadiut O, Capone S, Krainer F, Glieder A, Herwig C. Microbials for the production of monoclonal antibodies and antibody fragments. Trends Biotechnol. 2014;32(1):54–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rodrigo G, Gruvegård M, Van Alstine JM. Antibody fragments and their purification by protein L affinity chromatography. Antibodies. 2015;4(3):259–77.

    Article  CAS  Google Scholar 

  42. Vaneycken I, Devoogdt N, Van Gassen N, Vincke C, Xavier C, Wernery U, et al. Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer. FASEB J. 2011;25(7):2433–46.

    Article  CAS  PubMed  Google Scholar 

  43. Xavier C, Vaneycken I, D’Huyvetter M, Heemskerk J, Keyaerts M, Vincke C, et al. Synthesis, preclinical validation, dosimetry, and toxicity of 68Ga-NOTA-anti-HER2 nanobodies for iPET imaging of HER2 receptor expression in cancer. J Nucl Med. 2013;54(5):776–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Devoogdt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Funeh, C.N., Asiabi, P., D’Huyvetter, M., Devoogdt, N. (2023). Case Study #3: Antibody Fragments in Radiopharmaceutical Therapy. In: Bodei, L., Lewis, J.S., Zeglis, B.M. (eds) Radiopharmaceutical Therapy. Springer, Cham. https://doi.org/10.1007/978-3-031-39005-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39005-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39004-3

  • Online ISBN: 978-3-031-39005-0

  • eBook Packages: Biomedical and Life Sciences

Publish with us

Policies and ethics