Skip to main content

An Overview on Hypertension Mediated Organ Damage

  • Chapter
  • First Online:
Renal Denervation

Abstract

Assessment of hypertension-mediated organ damage (HMOD) is an important aspect of the diagnostic work-up in patients with elevated blood pressure and has been associated with increased cardiovascular risk independent of blood pressure. Regression of HMOD with adequate blood pressure lowering therapy provides reassurance in regards to the efficacy of the therapeutic intervention. The effects of renal denervation on regression of HMOD evident in the heart, the kidneys, and the large arteries are reviewed and put into the context of contemporary management of hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frohlich ED. State of the art lecture. Risk mechanisms in hypertensive heart disease. Hypertension. 1999;34(4 Pt 2):782–9.

    Article  CAS  PubMed  Google Scholar 

  2. Agabiti-Rosei E, Muiesan ML. Hypertensive left ventricular hypertrophy: pathophysiological and clinical issues. Blood Press. 2001;10(5–6):288–98.

    CAS  PubMed  Google Scholar 

  3. Devereux RB, Agabiti-Rosei E, Dahlof B, Gosse P, Hahn RT, Okin PM, et al. Regression of left ventricular hypertrophy as a surrogate end-point for morbid events in hypertension treatment trials. J Hypertens Suppl. 1996;14(2):S95–101. discussion S-2

    Article  CAS  PubMed  Google Scholar 

  4. Casale PN, Devereux RB, Milner M, Zullo G, Harshfield GA, Pickering TG, et al. Value of echocardiographic measurement of left ventricular mass in predicting cardiovascular morbid events in hypertensive men. Ann Intern Med. 1986;105(2):173–8.

    Google Scholar 

  5. de Simone G, Palmieri V, Koren MJ, Mensah GA, Roman MJ, Devereux RB. Prognostic implications of the compensatory nature of left ventricular mass in arterial hypertension. J Hypertens. 2001;19(1):119–25.

    Google Scholar 

  6. de Simone G, Verdecchia P, Pede S, Gorini M, Maggioni AP. Prognosis of inappropriate left ventricular mass in hypertension: the MAVI study. Hypertension. 2002;40(4):470–6.

    Article  PubMed  Google Scholar 

  7. Bombelli M, Facchetti R, Carugo S, Madotto F, Arenare F, Quarti-Trevano F, et al. Left ventricular hypertrophy increases cardiovascular risk independently of in-office and out-of-office blood pressure values. J Hypertens. 2009;27(12):2458–64.

    Article  CAS  PubMed  Google Scholar 

  8. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N Engl J Med. 1990;322(22):1561–6.

    Article  CAS  PubMed  Google Scholar 

  9. Ruilope LM, Schmieder RE. Left ventricular hypertrophy and clinical outcomes in hypertensive patients. Am J Hypertens. 2008;21(5):500–8.

    Google Scholar 

  10. Verdecchia P, Angeli F, Borgioni C, Gattobigio R, de Simone G, Devereux RB, et al. Changes in cardiovascular risk by reduction of left ventricular mass in hypertension: a meta-analysis. Am J Hypertens. 2003;16(11 Pt 1):895–9.

    Article  PubMed  Google Scholar 

  11. Muiesan ML, Salvetti M, Monteduro C, Bonzi B, Paini A, Viola S, et al. Left ventricular concentric geometry during treatment adversely affects cardiovascular prognosis in hypertensive patients. Hypertension. 2004;43(4):731–8.

    Article  CAS  PubMed  Google Scholar 

  12. Muiesan ML, Salvetti M, Paini A, Monteduro C, Galbassini G, Bonzi B, et al. Inappropriate left ventricular mass changes during treatment adversely affects cardiovascular prognosis in hypertensive patients. Hypertension. 2007;49(5):1077–83.

    Google Scholar 

  13. Devereux RB, Wachtell K, Gerdts E, Boman K, Nieminen MS, Papademetriou V, et al. Prognostic significance of left ventricular mass change during treatment of hypertension. JAMA. 2004;292(19):2350–6.

    Article  CAS  PubMed  Google Scholar 

  14. Pierdomenico SD, Cuccurullo F. Risk reduction after regression of echocardiographic left ventricular hypertrophy in hypertension: a meta-analysis. Am J Hypertens. 2010;23(8):876–81.

    Article  PubMed  Google Scholar 

  15. Hering D, Lambert EA, Marusic P, Walton AS, Krum H, Lambert GW, et al. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension 2013;61(2):457–464.

    Google Scholar 

  16. Brandt MC, Mahfoud F, Reda S, Schirmer SH, Erdmann E, Bohm M, et al. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol. 2012;59(10):901–9.

    Article  PubMed  Google Scholar 

  17. Mahfoud F, Urban D, Teller D, Linz D, Stawowy P, Hassel JH, et al. Effect of renal denervation on left ventricular mass and function in patients with resistant hypertension: data from a multi-Centre cardiovascular magnetic resonance imaging trial. Eur Heart J. 2014;35(33):2224–31b.

    Article  PubMed  Google Scholar 

  18. Kiuchi MG, Mion D, Graciano ML, Carreira MAMD, Kiuchi T, Chen SJ, et al. Proof of concept study: improvement of echocardiographic parameters after renal sympathetic denervation in CKD refractory hypertensive patients. Int J Cardiol. 2016;207:6–12.

    Article  PubMed  Google Scholar 

  19. Schirmer SH, Sayed MM, Reil JC, Ukena C, Linz D, Kindermann M, et al. Improvements in left ventricular hypertrophy and diastolic function following renal denervation: effects beyond blood pressure and heart rate reduction. J Am Coll Cardiol. 2014;63(18):1916–23.

    Article  PubMed  Google Scholar 

  20. Kiuchi MG, Mion D. Chronic kidney disease and risk factors responsible for sudden cardiac death: a whiff of hope? Kidney Research and Clinical Practice. 2016;35(1):3–9.

    Article  PubMed  Google Scholar 

  21. Doltra A, Messroghli D, Stawowy P, Hassel JH, Gebker R, Leppanen O, et al. Potential reduction of interstitial myocardial fibrosis with renal denervation. J Am Heart Assoc. 2014;3(6):e001353.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Perlini S, Palladini G, Ferrero I, Tozzi R, Fallarini S, Facoetti A, et al. Sympathectomy or doxazosin, but not propranolol, blunt myocardial interstitial fibrosis in pressure-overload hypertrophy. Hypertension. 2005;46(5):1213–8.

    Article  CAS  PubMed  Google Scholar 

  23. McLellan AJ, Schlaich MP, Taylor AJ, Prabhu S, Hering D, Hammond L, et al. Reverse cardiac remodeling after renal denervation: atrial electrophysiologic and structural changes associated with blood pressure lowering. Heart Rhythm. 2015;12(5):982–90.

    Article  PubMed  Google Scholar 

  24. Lau DH, Mackenzie L, Kelly DJ, Psaltis PJ, Brooks AG, Worthington M, et al. Hypertension and atrial fibrillation: evidence of progressive atrial remodeling with electrostructural correlate in a conscious chronically instrumented ovine model. Heart Rhythm. 2010;7(9):1282–90.

    Article  PubMed  Google Scholar 

  25. Dorr O, Liebetrau C, Mollmann H, Gaede L, Troidl C, Morczeck K, et al. Influence of renal sympathetic denervation on cardiac extracellular matrix turnover and cardiac fibrosis. Am J Hypertens. 2015;28(10):1285–92.

    Google Scholar 

  26. Mahfoud F, Tunev S, Ewen S, Cremers B, Ruwart J, Schulz-Jander D, et al. Impact of lesion placement on efficacy and safety of catheter-based radiofrequency renal denervation. J Am Coll Cardiol. 2015;66(16):1766–75.

    Article  PubMed  Google Scholar 

  27. Ceia F, Fonseca C, Mota T, Morais H, Matias F, de Sousa A, et al. Prevalence of chronic heart failure in southwestern Europe: the EPICA study. Eur J Heart Fail. 2002;4(4):531–9.

    Article  PubMed  Google Scholar 

  28. Stevens TL, Rasmussen TE, Wei CM, Kinoshita M, Matsuda Y, Burnett JC Jr. Renal role of the endogenous natriuretic peptide system in acute congestive heart failure. J Card Fail. 1996;2(2):119–25.

    Article  CAS  PubMed  Google Scholar 

  29. da Silva PM, Aguiar C. Sacubitril/valsartan: an important piece in the therapeutic puzzle of heart failure. Rev Port Cardiol. 2017;36(9):655–68.

    Google Scholar 

  30. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004.

    Article  PubMed  Google Scholar 

  31. Campese VM, Kogosov E. Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension. 1995;25(4 Pt 2):878–82.

    Article  CAS  PubMed  Google Scholar 

  32. Campese VM, Kogosov E, Koss M. Renal afferent denervation prevents the progression of renal disease in the renal ablation model of chronic renal failure in the rat. Am J Kidney Dis. 1995;26(5):861–5.

    Article  CAS  PubMed  Google Scholar 

  33. Kopp UC, Buckley-Bleiler RL. Impaired renorenal reflexes in two-kidney, one clip hypertensive rats. Hypertension. 1989;14(4):445–52.

    Article  CAS  PubMed  Google Scholar 

  34. Abramczyk P, Zwolinska A, Oficjalski P, Przybylski J. Kidney denervation combined with elimination of adrenal-renal portal circulation prevents the development of hypertension in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol. 1999;26(1):32–4.

    Article  CAS  PubMed  Google Scholar 

  35. van der Velde M, Matsushita K, Coresh J, Astor BC, Woodward M, Levey A, et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 2011;79(12):1341–52.

    Article  PubMed  Google Scholar 

  36. Chronic Kidney Disease Prognosis C, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375(9731):2073–81.

    Article  Google Scholar 

  37. Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar TH, Heerspink HJ, Mann JF, et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet. 2013;382(9889):339–52.

    Google Scholar 

  38. Ott C, Mahfoud F, Schmid A, Ditting T, Veelken R, Ewen S, et al. Improvement of albuminuria after renal denervation. Nephrology Dialysis Transplantation. 2014;29:9.

    Article  Google Scholar 

  39. Ott C, Mahfoud F, Schmid A, Toennes SW, Ewen S, Ditting T, et al. Renal denervation preserves renal function in patients with chronic kidney disease and resistant hypertension. J Hypertens. 2015;33(6):1261–6.

    Google Scholar 

  40. Hering D, Mahfoud F, Walton AS, Krum H, Lambert GW, Lambert EA, et al. Renal denervation in moderate to severe CKD. J Am Soc Nephrol. 2012;23(7):1250–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kiuchi MG, Graciano ML, Carreira MAMD, Kiuchi T, Chen SJ, Lugon JR. Long-term effects of renal sympathetic denervation on hypertensive patients with mild to moderate chronic kidney disease. J Clin Hypertens. 2016;18(3):190–6.

    Article  Google Scholar 

  42. Delacroix S, Chokka RG, Nelson AJ, Wong DT, Sidharta S, Pederson SM, et al. Renal sympathetic denervation increases renal blood volume per cardiac cycle: a serial magnetic resonance imaging study in resistant hypertension. Int J Nephrol Renovasc Dis. 2017;10:243–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schlaich MP, Bart B, Hering D, Walton A, Marusic P, Mahfoud F, et al. Feasibility of catheter-based renal nerve ablation and effects on sympathetic nerve activity and blood pressure in patients with end-stage renal disease. Int J Cardiol. 2013;168(3):2214–20.

    Article  PubMed  Google Scholar 

  44. Singh RR, McArdle ZM, Iudica M, Easton LK, Booth LC, May CN, et al. Sustained Decrease in Blood Pressure and Reduced Anatomical and Functional Reinnervation of Renal Nerves in Hypertensive Sheep 30 Months After Catheter-Based Renal Denervation. Hypertension. 2019:HYPERTENSIONAHA11812250.

    Google Scholar 

  45. Sata Y, Schlaich MP. The potential role of catheter-based renal sympathetic denervation in chronic and end-stage kidney disease. J Cardiovasc Pharmacol Ther. 2016;21(4):344–52.

    Article  CAS  PubMed  Google Scholar 

  46. Grisk O, Rettig R. Interactions between the sympathetic nervous system and the kidneys in arterial hypertension. Cardiovasc Res. 2004;61(2):238–46.

    Article  CAS  PubMed  Google Scholar 

  47. Linz D, Hohl M, Schutze J, Mahfoud F, Speer T, Linz B, et al. Progression of kidney injury and cardiac remodeling in obese spontaneously hypertensive rats: the role of renal sympathetic innervation. Am J Hypertens. 2015;28(2):256–65.

    Article  CAS  PubMed  Google Scholar 

  48. Lankadeva YR, Singh RR, Moritz KM, Parkington HC, Denton KM, Tare M. Renal dysfunction is associated with a reduced contribution of nitric oxide and enhanced vasoconstriction after a congenital renal mass reduction in sheep. Circulation. 2015;131(3):280.

    Article  CAS  PubMed  Google Scholar 

  49. Thomson SC, Blantz RC. Biophysics of glomerular filtration. Compr Physiol. 2012;2(3):1671–99.

    Article  PubMed  Google Scholar 

  50. Townsend RR, Wilkinson IB, Schiffrin EL, Avolio AP, Chirinos JA, Cockcroft JR, et al. Recommendations for improving and standardising vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension. 2015;66(3):698–722.

    Article  CAS  PubMed  Google Scholar 

  51. Chirinos JA, Segers P. Noninvasive evaluation of left ventricular afterload: part 2: arterial pressure-flow and pressure-volume relations in humans. Hypertension. 2010;56(4):563–70.

    Google Scholar 

  52. Weber T, Auer J, O’Rourke MF, Kvas E, Lassnig E, Lamm G, et al. Increased arterial wave reflections predict severe cardiovascular events in patients undergoing percutaneous coronary interventions. Eur Heart J. 2005;26(24):2657–63.

    Article  PubMed  Google Scholar 

  53. Li WF, Huang YQ, Feng YQ. Association between central haemodynamics and risk of all-cause mortality and cardiovascular disease: a systematic review and meta-analysis. J Hum Hypertens. 2019;33(7):531–41.

    Article  PubMed  Google Scholar 

  54. Weber T, Wassertheurer S, Rammer M, Haiden A, Hametner B, Eber B. Wave reflections, assessed with a novel method for pulse wave separation, are associated with end-organ damage and clinical outcomes. Hypertension. 2012;60(2):534–41.

    Google Scholar 

  55. Chirinos JA, Kips JG, Jacobs DR Jr, Brumback L, Duprez DA, Kronmal R, et al. Arterial wave reflections and incident cardiovascular events and heart failure: MESA (multiethnic study of atherosclerosis). J Am Coll Cardiol. 2012;60(21):2170–7.

    Article  PubMed  PubMed Central  Google Scholar 

  56. de Luca N, Asmar RG, London GM, O’Rourke MF, Safar ME, Investigators RP. Selective reduction of cardiac mass and central blood pressure on low-dose combination perindopril/indapamide in hypertensive subjects. J Hypertens. 2004;22(8):1623–30.

    Article  PubMed  Google Scholar 

  57. Hashimoto J, Imai Y, O’Rourke MF. Monitoring of antihypertensive therapy for reduction in left ventricular mass. Am J Hypertens. 2007;20(11):1229–33.

    CAS  PubMed  Google Scholar 

  58. Weber T, Wassertheurer S, Schmidt-Trucksass A, Rodilla E, Ablasser C, Jankowski P, et al. Relationship between 24-hour ambulatory central systolic blood pressure and left ventricular mass: a prospective Multicenter study. Hypertension. 2017;70(6):1157–64.

    Google Scholar 

  59. Weber T, Wassertheurer S, Rammer M, Maurer E, Hametner B, Mayer CC, et al. Validation of a brachial cuff-based method for estimating central systolic blood pressure. Hypertension. 2011;58(5):825–32.

    Article  CAS  PubMed  Google Scholar 

  60. Weber T, Chirinos JA. Pulsatile arterial haemodynamics in heart failure. Eur Heart J. 2018;39(43):3847–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jiang XJ, O’Rourke MF, Jin WQ, Liu LS, Li CW, Tai PC, et al. Quantification of glyceryl trinitrate effect through analysis of the synthesised ascending aortic pressure waveform. Heart. 2002;88(2):143–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hering D, Lambert EA, Marusic P, Ika-Sari C, Walton AS, Krum H, et al. Renal nerve ablation reduces augmentation index in patients with resistant hypertension. J Hypertens. 2013;31(9):1893–900.

    Google Scholar 

  63. Brandt MC, Reda S, Mahfoud F, Lenski M, Bohm M, Hoppe UC. Effects of renal sympathetic denervation on arterial stiffness and central hemodynamics in patients with resistant hypertension. J Am Coll Cardiol. 2012;60(19):1956–65.

    Article  PubMed  Google Scholar 

  64. Mortensen K, Franzen K, Himmel F, Bode F, Schunkert H, Weil J, et al. Catheter-based renal sympathetic denervation improves central hemodynamics and arterial stiffness: a pilot study. J Clin Hypertens (Greenwich). 2012;14(12):861–70.

    Google Scholar 

  65. Ott C, Franzen KF, Graf T, Weil J, Schmieder RE, Reppel M, et al. Renal denervation improves 24-hour central and peripheral blood pressures, arterial stiffness, and peripheral resistance. J Clin Hypertens (Greenwich). 2018;20(2):366–72.

    Article  PubMed  Google Scholar 

  66. Peters CD, Mathiassen ON, Vase H, Bech Norgaard J, Christensen KL, Schroeder AP, et al. The effect of renal denervation on arterial stiffness, central blood pressure and heart rate variability in treatment resistant essential hypertension: a substudy of a randomised sham-controlled double-blinded trial (the ReSET trial). Blood Press. 2017;26(6):366–80.

    Article  PubMed  Google Scholar 

  67. Kordalis A, Tsiachris D, Pietri P, Tsioufis C, Stefanadis C. Regression of organ damage following renal denervation in resistant hypertension: a meta-analysis. J Hypertens. 2018;36(8):1614–21.

    Google Scholar 

  68. Baroni M, Nava S, Giupponi L, Meani P, Panzeri F, Varrenti M, et al. Effects of renal sympathetic denervation on arterial stiffness and blood pressure control in resistant hypertensive patients: a single Centre prospective study. High Blood Press Cardiovasc Prev. 2015;22(4):411–6.

    Article  PubMed  Google Scholar 

  69. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55(13):1318–27.

    Article  PubMed  Google Scholar 

  70. Vlachopoulos C, Aznaouridis K, O’Rourke MF, Safar ME, Baou K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J. 2010;31(15):1865–71.

    Article  PubMed  Google Scholar 

  71. Boutouyrie P, Lacolley P, Girerd X, Beck L, Safar M, Laurent S. Sympathetic activation decreases medium-sized arterial compliance in humans. Am J Phys. 1994;267(4 Pt 2):H1368–76.

    CAS  Google Scholar 

  72. Vlachopoulos C, Aznaouridis K, Stefanadis C. Clinical appraisal of arterial stiffness: the argonauts in front of the Golden fleece. Heart. 2006;92(11):1544–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus P. Schlaich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kiuchi, M.G., Schlaich, M.P. (2023). An Overview on Hypertension Mediated Organ Damage. In: Heuser, R.R., Schlaich, M.P., Hering, D., Bertog, S.C. (eds) Renal Denervation. Springer, Cham. https://doi.org/10.1007/978-3-031-38934-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38934-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38933-7

  • Online ISBN: 978-3-031-38934-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics