Skip to main content

Approximating the Smallest k-Enclosing Geodesic Disc in a Simple Polygon

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14079))

Included in the following conference series:

  • 582 Accesses

Abstract

We consider the problem of finding a geodesic disc of smallest radius containing at least k points from a set of n points in a simple polygon that has m vertices, r of which are reflex vertices. We refer to such a disc as a SKEG disc. We present an algorithm to compute a SKEG disc using higher-order geodesic Voronoi diagrams with worst-case time \(O(k^{2} n + k^{2} r + \min (kr, r(n-k)) + m)\) ignoring polylogarithmic factors.

We then present a 2-approximation algorithm that finds a geodesic disc containing at least k points whose radius is at most twice that of a SKEG disc. Our algorithm runs in \(O(n \log ^{2} n \log r + m)\) expected time using \(O(n + m)\) expected space if \(k \in O\left( n / \log n\right) \); if \(k \in \omega \left( n / \log n\right) \), the algorithm computes a 2-approximation solution with high probability in \(O(n \log ^{2} n \log r + m)\) worst-case time with \(O(n + m)\) space.

Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Also known as the minimum enclosing disc problem.

  2. 2.

    In this paper, we use the notation |Z| to denote the number of points in Z if Z is a point set, or the number of vertices of Z if Z is a face or a polygon.

  3. 3.

    A \(\beta \)-approximation means that the disc returned has a radius at most \(\beta \) times the radius of an optimal solution.

  4. 4.

    When we refer to a point p being in a polygon P, we mean that p is in the interior of P or on the boundary, \(\partial P\).

  5. 5.

    We say an event happens with high probability if the probability is at least \(1 - n^{-\lambda }\) for some constant \(\lambda \).

  6. 6.

    We note that depending on the relations of the values m, r, and n to each other, there may be situations in which our algorithms may be improved by polylogarithmic factors by using the k-nearest neighbour query data structure.

  7. 7.

    Stated briefly, the order-k Voronoi diagram is a generalization of the Voronoi diagram such that each face is the locus of points whose k nearest neighbours are the k points of S associated with (i.e., that define) the face.

  8. 8.

    We could identify convex subpolygons before we get to the triangles, but it would not improve the asymptotic runtime.

  9. 9.

    We say an event happens with high probability if the probability is at least \(1 - n^{-\lambda }\) for some constant \(\lambda \).

  10. 10.

    At the moment, removing points from \(\mathbb {S}\) is a practical consideration; no lower bound is clear on the number of elements from \(\mathbb {S}\) that can be discarded in each iteration, though if one were to find a constant fraction lower bound, one could shave a logarithmic factor off the runtime.

  11. 11.

    Sometimes, as in [31], this is called a cusp. In [31] the funnel is defined as beginning at the cusp and ending at the diagonal.

References

  1. Aggarwal, A., Imai, H., Katoh, N., Suri, S.: Finding k points with minimum diameter and related problems. J. Algorithms 12(1), 38–56 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahn, H., Barba, L., Bose, P., De Carufel, J.L., Korman, M., Oh, E.: A linear-time algorithm for the geodesic center of a simple polygon. Discrete Comput. Geom. 56(4), 836–859 (2016)

    Google Scholar 

  3. Aichholzer, O., Hackl, T., Korman, M., Pilz, A., Vogtenhuber, B.: Geodesic-preserving polygon simplification. Int. J. Comput. Geom. Appl. 24(4), 307–324 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alexandrescu, A.: Fast deterministic selection. In: SEA. LIPIcs, vol. 75, pp. 24:1–24:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

    Google Scholar 

  5. Aronov, B.: On the geodesic Voronoi diagram of point sites in a simple polygon. Algorithmica 4(1), 109–140 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aronov, B., Fortune, S., Wilfong, G.T.: The furthest-site geodesic Voronoi diagram. Discrete Comput. Geom. 9, 217–255 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Asano, T., Toussaint, G.: Computing the geodesic center of a simple polygon. In: Discrete Algorithms and Complexity, pp. 65–79. Elsevier (1987)

    Google Scholar 

  8. Bae, S.W., Korman, M., Okamoto, Y.: Computing the geodesic centers of a polygonal domain. Comput. Geom. 77, 3–9 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barba, L.: Optimal algorithm for geodesic farthest-point Voronoi diagrams. In: SoCG. LIPIcs, vol. 129, pp. 12:1–12:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

    Google Scholar 

  10. Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for selection. J. Comput. Syst. Sci. 7(4), 448–461 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. Borgelt, M.G., van Kreveld, M.J., Luo, J.: Geodesic disks and clustering in a simple polygon. Int. J. Comput. Geom. Appl. 21(6), 595–608 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bose, P., Toussaint, G.T.: Computing the constrained Euclidean geodesic and link center of a simple polygon with application. In: Computer Graphics International, pp. 102–110. IEEE Computer Society (1996)

    Google Scholar 

  13. Chan, T.M.: Geometric applications of a randomized optimization technique. Discret. Comput. Geom. 22(4), 547–567 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chazelle, B.: A theorem on polygon cutting with applications. In: FOCS, pp. 339–349. IEEE Computer Society (1982)

    Google Scholar 

  15. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6(3), 485–524 (1991). https://doi.org/10.1007/BF02574703

    Article  MathSciNet  MATH  Google Scholar 

  16. Chazelle, B., Guibas, L.J.: Visibility and intersection problems in plane geometry. Discrete Comput. Geom. 4(6), 551–581 (1989). https://doi.org/10.1007/BF02187747

    Article  MathSciNet  MATH  Google Scholar 

  17. Chein, O., Steinberg, L.: Routing past unions of disjoint linear barriers. Networks 13(3), 389–398 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  19. Datta, A., Lenhof, H., Schwarz, C., Smid, M.H.M.: Static and dynamic algorithms for k-point clustering problems. J. Algorithms 19(3), 474–503 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. de Berg, S., Staals, F.: Dynamic data structures for k-nearest neighbor queries. Comput. Geom. 111, 101976 (2023)

    Google Scholar 

  21. Devroye, L.: Applications of the theory of records in the study of random trees. Acta Inform. 26(1/2), 123–130 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Efrat, A., Sharir, M., Ziv, A.: Computing the smallest k-enclosing circle and related problems. Comput. Geom. 4, 119–136 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Eppstein, D., Erickson, J.: Iterated nearest neighbors and finding minimal polytopes. Discrete Comput. Geom. 11(3), 321–350 (1994). https://doi.org/10.1007/BF02574012

    Article  MathSciNet  MATH  Google Scholar 

  24. Guibas, L.J., Hershberger, J.: Optimal shortest path queries in a simple polygon. J. Comput. Syst. Sci. 39(2), 126–152 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guibas, L.J., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2, 209–233 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Har-Peled, S.: Geometric Approximation Algorithms, vol. 173. American Mathematical Society (2011)

    Google Scholar 

  27. Har-Peled, S., Mazumdar, S.: Fast algorithms for computing the smallest k-enclosing circle. Algorithmica 41(3), 147–157 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer, New York (2001). https://doi.org/10.1007/978-1-4613-0131-8

    Book  MATH  Google Scholar 

  29. Hershberger, J.: A new data structure for shortest path queries in a simple polygon. Inf. Process. Lett. 38(5), 231–235 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kirkpatrick, D.G.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1), 28–35 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lee, D., Preparata, F.P.: Euclidean shortest paths in the presence of rectilinear barriers. Networks 14(3), 393–410 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, C., Lee, D.T.: Higher-order geodesic Voronoi diagrams in a polygonal domain with holes. In: SODA, pp. 1633–1645. SIAM (2013)

    Google Scholar 

  33. Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Commun. ACM 22(10), 560–570 (1979)

    Article  Google Scholar 

  34. Matoušek, J.: On enclosing k points by a circle. Inf. Process. Lett. 53(4), 217–221 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Matoušek, J.: On geometric optimization with few violated constraints. Discrete Comput. Geom. 14(4), 365–384 (1995). https://doi.org/10.1007/BF02570713

    Article  MathSciNet  MATH  Google Scholar 

  36. Megiddo, N.: Linear-time algorithms for linear programming in \({\mathbb{R}}^{\text{3 }}\) and related problems. SIAM J. Comput. 12(4), 759–776 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  37. Oh, E.: Optimal algorithm for geodesic nearest-point Voronoi diagrams in simple polygons. In: SODA, pp. 391–409. SIAM (2019)

    Google Scholar 

  38. Oh, E., Ahn, H.: Voronoi diagrams for a moderate-sized point-set in a simple polygon. Discrete Comput. Geom. 63(2), 418–454 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Oh, E., Bae, S.W., Ahn, H.: Computing a geodesic two-center of points in a simple polygon. Comput. Geom. 82, 45–59 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Oh, E., De Carufel, J.L., Ahn, H.: The geodesic 2-center problem in a simple polygon. Comput. Geom. 74, 21–37 (2018)

    Google Scholar 

  41. Pollack, R., Sharir, M., Rote, G.: Computing the geodesic center of a simple polygon. Discrete Comput. Geom. 4(6), 611–626 (1989). https://doi.org/10.1007/BF02187751

    Article  MathSciNet  MATH  Google Scholar 

  42. Rabanca, G., Vigan, I.: Covering the boundary of a simple polygon with geodesic unit disks. CoRR abs/1407.0614 (2014)

    Google Scholar 

  43. Toussaint, G.: Computing geodesic properties inside a simple polygon. Revue D’Intell. Artif. 3(2), 9–42 (1989)

    Google Scholar 

  44. Vigan, I.: Packing and covering a polygon with geodesic disks. CoRR abs/1311.6033 (2013)

    Google Scholar 

  45. Wang, H.: On the geodesic centers of polygonal domains. JoCG 9(1), 131–190 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Wang, H.: An optimal deterministic algorithm for geodesic farthest-point voronoi diagrams in simple polygons. In: SoCG. LIPIcs, vol. 189, pp. 59:1–59:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

    Google Scholar 

  47. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H. (ed.) New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0038202

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors thank Pat Morin, Jean-Lou de Carufel, Michiel Smid, and Sasanka Roy for helpful discussions as well as anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony D’Angelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bose, P., D’Angelo, A., Durocher, S. (2023). Approximating the Smallest k-Enclosing Geodesic Disc in a Simple Polygon. In: Morin, P., Suri, S. (eds) Algorithms and Data Structures. WADS 2023. Lecture Notes in Computer Science, vol 14079. Springer, Cham. https://doi.org/10.1007/978-3-031-38906-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38906-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38905-4

  • Online ISBN: 978-3-031-38906-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics