Skip to main content

Automated Data Adaptation for the Segmentation of Blood Vessels

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2022)

Abstract

In the field of image analysis used for diagnostic processes, domain shifts constitute a significant obstacle. Domain shifts lead to an incompatibility of an otherwise well-performing AI model for image segmentation. Accordingly, if two different machines image the same tissue, the model may provide better results for one of the two images depending on the similarity of the image data compared to the training data for generating the AI model. In this paper, we analyzed how the input images of a neural network have to be adapted to provide better segmentation results for images which are previously not compatible with the used model. Therefore, we developed two approaches to increase a model’s segmentation quality for a dataset with initially poor results. The first approach is based on heuristic optimization and creates a set of image processing algorithms for the data adaptation. Our algorithm selects the best combination of algorithms and generates the most suitable parameters for them regarding the resulting segmentation quality. The second approach uses an additional neural network for learning the incompatible dataset’s recoloring based on the resulting segmentation quality. Both methods increase the segmentation quality significantly without the need for changes to the segmentation model itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haghofer, A.: Heuristic domain shift adaptation for the analysis of blood vessel images. Paper presented at BIOSTEC 2022. https://www.insticc.org/node/TechnicalProgram/biostec/2022/presentationDetails/110288

  2. Weiss, K., Khoshgoftaar, T.M., Wang, D.D.: A survey of transfer learning. J. Big Data 3(1), 1–40 (2016). https://doi.org/10.1186/s40537-016-0043-6

    Article  Google Scholar 

  3. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  4. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019). https://doi.org/10.1186/s40537-019-0197-0

    Article  Google Scholar 

  5. Radosavovic, I., Kosaraju, R., Girshick, R., He, K., Dollár, P.: Designing network design spaces. In: Proceedings of the IEEE Computer Society Conference On Computer Vision And Pattern Recognition (2020)

    Google Scholar 

  6. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  7. Iakubovskii, P.: Segmentation Models Pytorch. GitHub Repository (2019). https://github.com/qubvel/segmentation_models.pytorch

  8. Getreuer, P.: A Survey of Gaussian Convolution Algorithms. Image Processing On Line (2013)

    Google Scholar 

  9. Szeliski, R.: Computer vision: algorithms and applications. Choice Reviews Online (2011)

    Google Scholar 

  10. Haghofer, A., Dorl, S., Oszwald, A., Breuss, J., Jacak, J., Winkler, S.M.: Evolutionary optimization of image processing for cell detection in microscopy images. Soft Comput. 24(23), 17847–17862 (2020). https://doi.org/10.1007/s00500-020-05033-0

    Article  Google Scholar 

  11. Rechenberg, I.: Evolutionsstrategie 94. Frommann-Holzboog (1994)

    Google Scholar 

  12. Dice, L.: Measures of the amount of ecologic association between species. Ecology (1945)

    Google Scholar 

  13. Turchenko, V., Chalmers, E., Luczak, A.: A Deep Convolutional Auto-Encoder with Pooling - Unpooling Layers in Caffe (2017)

    Google Scholar 

  14. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8024–8035 (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  15. Falcon, W., et al.: Pytorch lightning. GitHub, vol. 3 (2019). https://github.com/pytorchlightning/pytorch-lightning

  16. Green-Armytage, P.: Complementary Colors. Encyclopedia Of Color Science And Technology, pp. 523–535 (2016). https://doi.org/10.1007/978-1-4419-8071-7_264

  17. OpenCV Open Source Computer Vision Library (2015)

    Google Scholar 

  18. Deryugina, E., Quigley, J.: Chapter 2 Chick Embryo chorioallantoic membrane models to quantify angiogenesis induced by inflammatory and tumor cells or purified effector molecules. Methods Enzymol. 444, 21–41 (2008)

    Google Scholar 

  19. Mahapatra, D., Bozorgtabar, B., Thiran, J.-P., Shao, L.: Structure preserving stain normalization of histopathology images using self supervised semantic guidance. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 309–319. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_30

    Chapter  Google Scholar 

  20. Roy, G., et al.: Robust Mitosis Detection Using a Cascade Mask-RCNN Approach With Domain-Specific Residual Cycle-GAN Data Augmentation (2021)

    Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by the Center of Excellence for Technical Innovation in Medicine (TIMED), the Dissertation Programme of the University of Applied Sciences Upper Austria, and the Austrian Research Promotion Agency (FFG, project no. 881547).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Haghofer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haghofer, A. et al. (2023). Automated Data Adaptation for the Segmentation of Blood Vessels. In: Roque, A.C.A., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2022. Communications in Computer and Information Science, vol 1814. Springer, Cham. https://doi.org/10.1007/978-3-031-38854-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38854-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38853-8

  • Online ISBN: 978-3-031-38854-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics