Skip to main content

Automated Segmentation of Patterned Cells in Micropatterning Microscopy Images

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2022)

Abstract

Micropatterning in living cells is used for the analysis of protein-protein interactions. The quantitative analysis of images produced within this process is time-consuming and non-trivial task. For the simplification and speedup of such analyses, we describe a method for fully automated analysis of micro-patterned cells in fluorescence microscopy images. An approach based on an evolution strategy allows the grid extraction of the assays to estimate the pattern on the cells. We outline a workflow for the segmentation of these patterned cells based on a Unet. We also show the efficiency of different data augmentations applied to different patterning setups. A Dice score of 0.89 with 3 µm patterns and 0.79 with 1 µm patterns could be achieved. As we demonstrate in this study, we can provide thorough micropatterning studies, by automating the cell segmentation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lanzerstorfer, P., Müller, U., Gordiyenko, K., Weghuber, J., Niemeyer, C.: Highly modular protein micropatterning sheds light on the role of Clathrin-mediated endocytosis for the quantitative analysis of protein-protein interactions in live cells. Biomolecules 10, 540 (2020)

    Article  Google Scholar 

  2. Scherr, T.: Cell segmentation and tracking using CNN-based distance predictions and a graph-based matching strategy. PLoS ONE 15, 1–22 (2020). https://doi.org/10.1371/journal.pone.0243219

    Article  Google Scholar 

  3. Hager, R., Müller, U., Ollinger, N., Weghuber, J., Lanzerstorfer, P.: Subcellular dynamic immunopatterning of cytosolic protein complexes on microstructured polymer substrates. ACS Sens. 6, 4076–4088 (2021)

    Article  Google Scholar 

  4. Schurr, J.: Automated Cell Segmentation for Micropatterning Microscopy Images. Paper presented at BIOSTEC 2022 (2021). https://biostec.scitevents.org/Abstracts.aspx

  5. Schaller, S., Jacak, J., Borgmann, D., Weghuber, J., Winkler, S.: An image analysis suite for automated spot detection in cellular and nano structures of microscopy images. In: Proceedings of the 20th Annual International Conference on Intelligent Systems For Molecular Biology (ISMB) (2012)

    Google Scholar 

  6. Borgmann, D., Weghuber, J., Schaller, S., Jacak, J., Winkler, S.: Identification of patterns in microscopy images of biological samples using evolution strategies. In: Proceedings of the 24th European Modeling And Simulation Symposium, pp. 271–276 (2012)

    Google Scholar 

  7. Stadlbauer, V., et al.: Fluorescence microscopy-based quantitation of GLUT4 translocation: high throughput or high content? Int. J. Mol. Sci. 21, 7964 (2020)

    Article  Google Scholar 

  8. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/. Software available from tensorflow.org

  9. Chollet, F.: Keras (2015). https://keras.io

  10. Uka, A., Polisi, X., Halili, A., Dollinger, C., Vrana, N.: Analysis of cell behavior on micropatterned surfaces by image processing algorithms. In: IEEE EUROCON 2017–17th International Conference On Smart Technologies, pp. 75–78 (2017)

    Google Scholar 

  11. Koohbanani, N., Jahanifar, M., Tajadin, N., Rajpoot, N.: NuClick: a deep learning framework for interactive segmentation of microscopic images. Med. Image Anal. 65, 101771 (2020)

    Article  Google Scholar 

  12. Motsch, V., Brameshuber, M., Baumgart, F., Schütz, G., Sevcsik, E.: A micropatterning platform for quantifying interaction kinetics between the T cell receptor and an intracellular binding protein. Sci. Rep. 9, 1–10 (2019)

    Article  Google Scholar 

  13. Thomas, R., John, J.: A review on cell detection and segmentation in microscopic images. In: 2017 International Conference On Circuit, Power And Computing Technologies (ICCPCT), pp. 1–5 (2017)

    Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference On Medical Image Computing And Computer-Assisted Intervention, pp. 234–241 (2015)

    Google Scholar 

  15. Vicar, T., et al.: Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison. BMC Bioinf. 20, 1–25 (2019)

    Article  Google Scholar 

  16. Xing, F., Yang, L.: Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review. IEEE Rev. Biomed. Eng. 9, 234–263 (2016)

    Article  Google Scholar 

  17. Jadon, S.: A survey of loss functions for semantic segmentation. In: 2020 IEEE Conference On Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–7 (2020)

    Google Scholar 

  18. Buslaev, A., Kalinin, A.: Albumentations: fast and flexible image augmentations. ArXiv E-prints (2018)

    Google Scholar 

  19. Diakogiannis, F., Waldner, F., Caccetta, P., Wu, C.: ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogrammetry Remote Sens. 162, 94–114 (2020)

    Article  Google Scholar 

  20. Iakubovskii, P.: Segmentation Models Pytorch. GitHub Repository (2019). https://github.com/qubvel/segmentation_models.pytorch

  21. Radosavovic, I., Kosaraju, R., Girshick, R., He, K., Dollár, P.: Designing Network Design Spaces (2020)

    Google Scholar 

  22. Nalepa, J., Marcinkiewicz, M., Kawulok, M.: Data augmentation for brain-tumor segmentation: a review. Front. Comput. Neurosci. 13, 83 (2019)

    Article  Google Scholar 

  23. Ali, M., et al.: Evaluating very deep convolutional neural networks for nucleus segmentation from brightfield cell microscopy images. SLAS DISCOVERY: Adv. Sci. Drug Disc. 26, 1125–1137 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper is supported by the Center of Excellence for Technical Innovation in Medicine (TIMED, project BIOsens), and the Christian-Doppler Forschungsgesellschaft (Josef Ressel Center for Phytogenic Drug Research). Special thanks to my supervisor Joseph Scharinger.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Schurr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schurr, J., Haghofer, A., Lanzerstorfer, P., Winkler, S. (2023). Automated Segmentation of Patterned Cells in Micropatterning Microscopy Images. In: Roque, A.C.A., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2022. Communications in Computer and Information Science, vol 1814. Springer, Cham. https://doi.org/10.1007/978-3-031-38854-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38854-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38853-8

  • Online ISBN: 978-3-031-38854-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics