Skip to main content

Labeling of CPPs

  • Chapter
  • First Online:
CPP, Cell-Penetrating Peptides
  • 272 Accesses

Abstract

This Chapter summarizes the multiple methods for labeling used in CPP research. Most of the methods of chemistry, biophysics, biochemistry, cell signaling, molecular biology, imaging etc., has been used to understand the action of CPPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbate, V., Reelfs, O., Hider, R. C., & Pourzand, C. (2015). Design of novel fluorescent mitochondria-targeted peptides with iron-selective sensing activity. The Biochemical Journal, 469, 357–366.

    Article  PubMed  Google Scholar 

  • Afsari, H. S., Cardoso Dos Santos, M., Linden, S., Chen, T., Qiu, X., Van Bergen En Henegouwen, P. M., Jennings, T. L., Susumu, K., Medintz, I. L., Hildebrandt, N., & Miller, L. W. (2016). Time-gated FRET nanoassemblies for rapid and sensitive intra- and extracellular fluorescence imaging. Science Advances, 2, e1600265.

    Google Scholar 

  • Barnett, E. M., Zhang, X., Maxwell, D., Chang, Q., & Piwnica-Worms, D. (2009). Single-cell imaging of retinal ganglion cell apoptosis with a cell-penetrating, activatable peptide probe in an in vivo glaucoma model. Proceedings of the National Academy of Sciences of the United States of America, 106, 9391–9396.

    Article  PubMed  PubMed Central  Google Scholar 

  • Benner, N. L., Zang, X., Buehler, D. C., Kickhoefer, V. A., Rome, M. E., Rome, L. H., & Wender, P. A. (2017). Vault nanoparticles: Chemical modifications for imaging and enhanced delivery. ACS Nano, 11, 872–881.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bilan, R., Nabiev, I., & Sukhanova, A. (2016). Quantum Dot-Based Nanotools for Bioimaging, Diagnostics, and Drug Delivery. ChemBioChem, 18, 201600357.

    Google Scholar 

  • Birch, D., Christensen, M. V., Staerk, D., Franzyk, H., & Nielsen, H. M. (2017). Fluorophore labeling of a cell-penetrating peptide induces differential effects on its cellular distribution and affects cell viability. Biochimica et Biophysica Acta, 1859, 2483–2494.

    Article  PubMed  Google Scholar 

  • Breger, J. C., Muttenthaler, M., Delehanty, J. B., Thompson, D. A., Oh, E., Susumu, K., Deschamps, J. R., Anderson, G. P., Field, L. D., Walper, S. A., Dawson, P. E., & Medintz, I. L. (2017). Nanoparticle cellular uptake by dendritic wedge peptides: Achieving single peptide facilitated delivery. Nanoscale, 9, 10447–10464.

    Article  PubMed  Google Scholar 

  • Byrne, A., Dolan, C., Moriarty, R. D., Martin, A., Neugebauer, U., Forster, R. J., Davies, A., Volkov, Y., & Keyes, T. E. (2015). Osmium(ii) polypyridyl polyarginine conjugate as a probe for live cell imaging; a comparison of uptake, localization and cytotoxicity with its ruthenium(ii) analogue. Dalton Transactions, 44, 14323–14332.

    Article  PubMed  Google Scholar 

  • Cardoso, A. M., Trabulo, S., Cardoso, A. L., Lorents, A., Morais, C. M., Gomes, P., Nunes, C., Lucio, M., Reis, S., Padari, K., Pooga, M., Pedroso de Lima, M. C., & Jurado, A. S. (2012). S4(13)-PV cell-penetrating peptide induces physical and morphological changes in membrane-mimetic lipid systems and cell membranes: implications for cell internalization. Biochimica et Biophysica Acta, 1818, 877-888.

    Google Scholar 

  • Chang, S., Wu, X., Li, Y., Niu, D., Gao, Y., Ma, Z., Gu, J., Zhao, W., Zhu, W., Tian, H., & Shi, J. (2013). A pH-responsive hybrid fluorescent nanoprober for real time cell labeling and endocytosis tracking. Biomaterials, 34, 10182–10190.

    Article  PubMed  Google Scholar 

  • Cheruku, P., Huang, J. H., Yen, H. J., Iyer, R. S., Rector, K. D., Martinez, J. S., & Wang, H. L. (2015). Tyrosine-derived stimuli responsive, fluorescent amino acids. Chemical Science, 6, 1150–1158.

    Article  PubMed  Google Scholar 

  • Cheung, J. C., Kim Chiaw, P., Deber, C. M., & Bear, C. E. (2009). A novel method for monitoring the cytosolic delivery of peptide cargo. Journal of Controlled Release, 137, 2–7.

    Google Scholar 

  • Chopra, A. (2012). Cy5.5-Conjugated matrix metalloproteinase cleavable peptide nanoprobe. National Center for Biotechnology Information (US), Bethesda (MD)

    Google Scholar 

  • Eiriksdottir, E., Mäger, I., Lehto, T., el Andaloussi, S., & Langel, Ü. (2010). Cellular internalization kinetics of (luciferin-)cell-penetrating peptide conjugates. Bioconjugate Chemistry, 21, 1662–1672.

    Article  PubMed  Google Scholar 

  • Freire, J. M., Veiga, A. S., Rego de Figueiredo, I., de la Torre, B. G., Santos, N. C., Andreu, D., da Poian, A. T., & Castanho, M. A. (2014). Nucleic acid delivery by cell penetrating peptides derived from dengue virus capsid protein: design and mechanism of action. The FEBS Journal, 281, 191–215.

    Google Scholar 

  • Ganguly, S., Chaubey, B., Tripathi, S., Upadhyay, A., Neti, P. V., Howell, R. W., & Pandey, V. N. (2008). Pharmacokinetic analysis of polyamide nucleic-acid-cell penetrating peptide conjugates targeted against HIV-1 transactivation response element. Oligonucleotides, 18, 277–286.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gharibkandi, N. A., Conlon, J. M., & Hosseinimehr, S. J. (2020). Strategies for improving stability and pharmacokinetic characteristics of radiolabeled peptides for imaging and therapy. Peptides, 170385.

    Google Scholar 

  • Guo, Z., Peng, H., Kang, J., & Sun, D. (2016). Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications. Biomedical Reports, 4, 528–534.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hällbrink, M., Floren, A., Elmquist, A., Pooga, M., Bartfai, T., & Langel, Ü. (2001). Cargo delivery kinetics of cell-penetrating peptides. Biochimica et Biophysica Acta, 1515, 101–109.

    Article  PubMed  Google Scholar 

  • Helmfors, H., Eriksson, J., & Langel, Ü. (2015). Optimized luciferase assay for cell-penetrating peptide-mediated delivery of short oligonucleotides. Analytical Biochemistry, 484, 136–142.

    Article  PubMed  Google Scholar 

  • Herbig, M. E., Fromm, U., Leuenberger, J., Krauss, U., Beck-Sickinger, A. G., & Merkle, H. P. (2005). Bilayer interaction and localization of cell penetrating peptides with model membranes: A comparative study of a human calcitonin (hCT)-derived peptide with pVEC and pAntp(43-58). Biochimica et Biophysica Acta, 1712, 197–211.

    Article  PubMed  Google Scholar 

  • Hyrup Moller, L., Bahnsen, J. S., Nielsen, H. M., Ostergaard, J., Sturup, S., & Gammelgaard, B. (2015). Selenium as an alternative peptide label—Comparison to fluorophore-labelled penetratin. European Journal of Pharmaceutical Sciences, 67, 76–84.

    Google Scholar 

  • Illien, F., Rodriguez, N., Amoura, M., Joliot, A., Pallerla, M., Cribier, S., Burlina, F., & Sagan, S. (2016). Quantitative fluorescence spectroscopy and flow cytometry analyses of cell-penetrating peptides internalization pathways: Optimization, pitfalls, comparison with mass spectrometry quantification. Scientific Reports, 6.

    Google Scholar 

  • Jones, L. R., Goun, E. A., Shinde, R., Rothbard, J. B., Contag, C. H., & Wender, P. A. (2006). Releasable luciferin-transporter conjugates: Tools for the real-time analysis of cellular uptake and release. Journal of the American Chemical Society, 128, 6526–6527.

    Article  PubMed  Google Scholar 

  • Kam, Y., Rubinstein, A., Naik, S., Djavsarov, I., Halle, D., Ariel, I., Gure, A. O., Stojadinovic, A., Pan, H., Tsivin, V., Nissan, A., & Yavin, E. (2014). Detection of a long non-coding RNA (CCAT1) in living cells and human adenocarcinoma of colon tissues using FIT-PNA molecular beacons. Cancer Letters, 352, 90–96.

    Article  PubMed  Google Scholar 

  • Kamei, N., Shingaki, T., Kanayama, Y., Tanaka, M., Zochi, R., Hasegawa, K., Watanabe, Y., & Takeda-Morishita, M. (2016). Visualization and quantitative assessment of the brain distribution of insulin through nose-to-brain delivery based on the cell-penetrating peptide noncovalent strategy. Molecular Pharmaceutics, 13, 1004–1011.

    Article  PubMed  Google Scholar 

  • Kameyama, S., Horie, M., Kikuchi, T., Omura, T., Takeuchi, T., Nakase, I., Sugiura, Y., & Futaki, S. (2006). Effects of cell-permeating peptide binding on the distribution of 125I-labeled Fab fragment in rats. Bioconjugate Chemistry, 17, 597–602.

    Article  PubMed  Google Scholar 

  • Karas, J., Turner, B. J., & Shabanpoor, F. (2018). The assembly of fluorescently labeled peptide-oligonucleotide conjugates via orthogonal ligation strategies. Methods in Molecular Biology, 1828, 355–363.

    Article  PubMed  Google Scholar 

  • Kim, C., Lee, Y., Kim, J. S., Jeong, J. H., & Park, T. G. (2010). Thermally triggered cellular uptake of quantum dots immobilized with poly(N-isopropylacrylamide) and cell penetrating peptide. Langmuir: THe ACS Journal of Surfaces and Colloids, 26, 14965–14969.

    Article  PubMed  Google Scholar 

  • Kiss, É., Gyulai, G., Pári, E., Horváti, K., & Bősze, S. (2018). Membrane affinity and fluorescent labelling: Comparative study of monolayer interaction, cellular uptake and cytotoxicity profile of carboxyfluorescein-conjugated cationic peptides. Amino Acids, 50, 1557–1571.

    Article  PubMed  Google Scholar 

  • Klein, A., Haseloer, A., Lützenburg, T., Strache, J. P., Neudörfl, J., & Neundorf, I. (2020). Building up Pt(II)-thiosemicarbazone-lysine-sC18 conjugates. ChemBioChem, 22, 694–704.

    PubMed  PubMed Central  Google Scholar 

  • Knight, J. C., Topping, C., Mosley, M., Kersemans, V., Falzone, N., Fernandez-Varea, J. M., & Cornelissen, B. (2015). PET imaging of DNA damage using (89)Zr-labelled anti-gammaH2AX-TAT immunoconjugates. European Journal of Nuclear Medicine and Molecular Imaging, 42, 1707–1717.

    Article  PubMed  Google Scholar 

  • Kostiv, U., Kotelnikov, I., Proks, V., Slouf, M., Kucka, J., Engstova, H., Jezek, P., & Horak, D. (2016). RGDS- and TAT-conjugated upconversion of NaYF4:Yb(3+)/Er(3+) & SiO2 nanoparticles. In Vitro human epithelioid cervix carcinoma cellular uptake, imaging, and targeting. ACS Applied Materials & Interfaces, 8, 20422–20431.

    Article  Google Scholar 

  • Kurth, F., Dittrich, P. S., Walde, P., & Seebach, D. (2018). Influence of the membrane dye R18 and of DMSO on cell penetration of guanidinium-rich peptides. Chemistry & Biodiversity, 15, e1800302.

    Article  Google Scholar 

  • Kyrychenko, A., Rodnin, M. V., & Ladokhin, A. S. (2015). Calibration of distribution analysis of the depth of membrane penetration using simulations and depth-dependent fluorescence quenching. The Journal of Membrane Biology, 248, 583–594.

    Article  PubMed  Google Scholar 

  • Ladokhin, A. S. (2014). Measuring membrane penetration with depth-dependent fluorescence quenching: distribution analysis is coming of age. Biochimica et Biophysica Acta, 9, 1.

    Google Scholar 

  • Lee, H. J., Huang, Y. W., & Aronstam, R. S. (2019). Intracellular delivery of nanoparticles mediated by lactoferricin cell-penetrating peptides in an endocytic pathway. Journal of Nanoscience and Nanotechnology, 19, 613–621.

    Article  PubMed  Google Scholar 

  • Lee, J., & Bogyo, M. (2010). Development of near-infrared fluorophore (NIRF)-labeled activity-based probes for in vivo imaging of legumain. ACS Chemical Biology, 5, 233–243.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, J., Moon, S. U., Lee, Y. S., Ali, B. A., Al-Khedhairy, A. A., Ali, D., Ahmed, J., Al Salem, A. M., & Kim, S. (2015). Quantum dot-based molecular beacon to monitor intracellular microRNAs. Sensors, 15, 12872–12883.

    Google Scholar 

  • Lei, Y., Tang, H., Yao, L., Yu, R., Feng, M., & Zou, B. (2008). Applications of mesenchymal stem cells labeled with Tat peptide conjugated quantum dots to cell tracking in mouse body. Bioconjugate Chemistry, 19, 421–427.

    Article  PubMed  Google Scholar 

  • Li, J., Liu, F., Shao, Q., Min, Y., Costa, M., Yeow, E. K., & Xing, B. (2014). Enzyme-responsive cell-penetrating peptide conjugated mesoporous silica quantum dot nanocarriers for controlled release of nucleus-targeted drug molecules and real-time intracellular fluorescence imaging of tumor cells. Advanced Healthcare Materials, 3, 1230–1239.

    Article  PubMed  Google Scholar 

  • Lindgren, M., Gallet, X., Soomets, U., Hällbrink, M., Brakenhielm, E., Pooga, M., Brasseur, R., & Langel, Ü. (2000). Translocation properties of novel cell penetrating transportan and penetratin analogues. Bioconjugate Chemistry, 11, 619–626.

    Article  PubMed  Google Scholar 

  • Liu, B. R., Huang, Y. W., Chiang, H. J., & Lee, H. J. (2010). Cell-penetrating peptide-functionalized quantum dots for intracellular delivery. Journal of Nanoscience and Nanotechnology, 10, 7897–7905.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, J., & Afshar, S. (2020). In Vitro assays: Friends or foes of cell-penetrating peptides. International Journal of Molecular Sciences, 21.

    Google Scholar 

  • Liu, X., Braun, G. B., Qin, M., Ruoslahti, E., & Sugahara, K. N. (2017). In vivo cation exchange in quantum dots for tumor-specific imaging. Nature Communications, 8, 343.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mäger, I., Eiriksdottir, E., Langel, K., el Andaloussi, S., & Langel, Ü. (2010). Assessing the uptake kinetics and internalization mechanisms of cell-penetrating peptides using a quenched fluorescence assay. Biochimica et Biophysica Acta, 1798, 338–343.

    Article  PubMed  Google Scholar 

  • Mäger, I., Langel, K., Lehto, T., Eiriksdottir, E., & Langel, Ü. (2012). The role of endocytosis on the uptake kinetics of luciferin-conjugated cell-penetrating peptides. Biochimica et Biophysica Acta, 1818, 502–511.

    Article  PubMed  Google Scholar 

  • Magzoub, M., Eriksson, L. E., & Graslund, A. (2003). Comparison of the interaction, positioning, structure induction and membrane perturbation of cell-penetrating peptides and non-translocating variants with phospholipid vesicles. Biophysical Chemistry, 103, 271–288.

    Article  PubMed  Google Scholar 

  • Mallek, A. J., Pentelute, B. L., & Buchwald, S. L. (2021). Selective N-Arylation of p-Aminophenylalanine in unprotected peptides with organometallic palladium reagents. Angewandte Chemie (International Edition in English), 60, 16928–16931.

    Article  Google Scholar 

  • Marinova, Z., Vukojevic, V., Surcheva, S., Yakovleva, T., Cebers, G., Pasikova, N., Usynin, I., Hugonin, L., Fang, W., Hallberg, M., Hirschberg, D., Bergman, T., Langel, Ü., Hauser, K. F., Pramanik, A., Aldrich, J. V., Gräslund, A., Terenius, L., & Bakalkin, G. (2005). Translocation of dynorphin neuropeptides across the plasma membrane. A putative mechanism of signal transmission. The Journal of Biological Chemistry, 280, 26360–26370.

    Article  PubMed  Google Scholar 

  • Maxwell, D., Chang, Q., Zhang, X., Barnett, E. M., & Piwnica-Worms, D. (2009). An improved cell-penetrating, caspase-activatable, near-infrared fluorescent peptide for apoptosis imaging. Bioconjugate Chemistry, 20, 702–709.

    Article  PubMed  PubMed Central  Google Scholar 

  • Medintz, I. L., Pons, T., Delehanty, J. B., Susumu, K., Brunel, F. M., Dawson, P. E., & Mattoussi, H. (2008). Intracellular delivery of quantum dot-protein cargos mediated by cell penetrating peptides. Bioconjugate Chemistry, 19, 1785–1795.

    Article  PubMed  Google Scholar 

  • Medintz, I. L., Uyeda, H. T., Goldman, E. R., & Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 4, 435–446.

    Article  PubMed  Google Scholar 

  • Meerovich, I., Muthukrishnan, N., Johnson, G. A., Erazo-Oliveras, A., & Pellois, J. P. (2014). Photodamage of lipid bilayers by irradiation of a fluorescently labeled cell-penetrating peptide. Biochimica et Biophysica Acta, 1840, 507–515.

    Article  PubMed  Google Scholar 

  • Meng, Z., Guo, L., & Li, Q. (2017). Peptide-coated semiconductor polymer dots for stem cells labeling and tracking. Chemistry, 23, 6836–6844.

    Article  PubMed  Google Scholar 

  • Morales, D. P., Wonderly, W. R., Huang, X., McAdams, M., Chron, A. B., & Reich, N. O. (2017). Affinity-based assembly of peptides on plasmonic nanoparticles delivered intracellularly with light activated control. Bioconjugate Chemistry, 28, 1816–1820.

    Article  PubMed  Google Scholar 

  • Murata, Y., Jo, J. I., & Tabata, Y. (2017). Preparation of gelatin nanospheres incorporating quantum dots and iron oxide nanoparticles for multimodal cell imaging. Journal of Biomaterials Science, Polymer Edition, 28, 555–568.

    Article  PubMed  Google Scholar 

  • Muthukrishnan, N., Donovan, S., & Pellois, J. P. (2014). The photolytic activity of poly-arginine cell penetrating peptides conjugated to carboxy-tetramethylrhodamine is modulated by arginine residue content and fluorophore conjugation site. Photochemistry and Photobiology, 90, 1034–1042.

    Article  PubMed  PubMed Central  Google Scholar 

  • Najjar, K., Erazo-Oliveras, A., & Pellois, J. P. (2015). Delivery of proteins, peptides or cell-impermeable small molecules into live cells by incubation with the endosomolytic reagent dfTAT. Journal of Visualized Experiments: Jove, 2, 53175.

    Google Scholar 

  • Neundorf, I. (2017). Metal complex-peptide conjugates: How to modulate bioactivity of metal-containing compounds by the attachment to peptides. Current Medicinal Chemistry, 24, 1853–1861.

    Google Scholar 

  • Ni, Z., Gong, Y., Dai, X., Ding, W., Wang, B., Gong, H., Qin, L., Cheng, P., Li, S., Lian, J., & He, F. (2015). AU4S: A novel synthetic peptide to measure the activity of ATG4 in living cells. Autophagy, 11, 403–415.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Malley, W. I., Rubbiani, R., Aulsebrook, M. L., Grace, M. R., Spiccia, L., Tuck, K. L., Gasser, G., & Graham, B. (2016). Cellular uptake and photo-cytotoxicity of a Gadolinium(III)-DOTA-naphthalimide complex “clicked” to a lipidated tat peptide. Molecules, 21.

    Google Scholar 

  • Obitz, D., Miller, R. G., & Metzler-Nolte, N. (2021). Synthesis and DNA interaction studies of Ru(II) cell penetrating peptide (CPP) bioconjugates. Dalton Transactions, 50, 13768–13777.

    Article  PubMed  Google Scholar 

  • Okuda-Shinagawa, N. M., Moskalenko, Y. E., Junqueira, H. C., Baptista, M. S., Marques, C. M., & Machini, M. T. (2017). Fluorescent and photosensitizing conjugates of cell-penetrating peptide TAT(47–57): Design, microwave-assisted synthesis at 60 degrees C, and properties. ACS Omega, 2, 8156–8166.

    Article  PubMed  PubMed Central  Google Scholar 

  • Onoshima, D., Yukawa, H., & Baba, Y. (2015). Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine. Advanced Drug Delivery Reviews, 95, 2–14.

    Article  PubMed  Google Scholar 

  • Padari, K., Koppel, K., Lorents, A., Hallbrink, M., Mano, M., Pedroso de Lima, M. C., & Pooga, M. (2010). S4(13)-PV cell-penetrating peptide forms nanoparticle-like structures to gain entry into cells. Bioconjugate Chemistry, 21, 774-783.

    Google Scholar 

  • Pan, D., Hu, Z., Qiu, F., Huang, Z. L., Ma, Y., Wang, Y., Qin, L., Zhang, Z., Zeng, S., & Zhang, Y. H. (2014). A general strategy for developing cell-permeable photo-modulatable organic fluorescent probes for live-cell super-resolution imaging. Nature Communications, 5, 5573.

    Article  PubMed  Google Scholar 

  • Pazos, I. M., Ahmed, I. A., Berrios, M. I., & Gai, F. (2015). Sensing pH via p-cyanophenylalanine fluorescence: Application to determine peptide pKa and membrane penetration kinetics. Analytical Biochemistry, 483, 21–26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peier, A., Ge, L., Boyer, N., Frost, J., Duggal, R., Biswas, K., Edmondson, S., Hermes, J. D., Yan, L., Zimprich, C., Sadruddin, A., Kristal Kaan, H. Y., Chandramohan, A., Brown, C. J., Thean, D., Lee, X. E., Yuen, T. Y., Ferrer-Gago, F. J., Johannes, C. W., …, Partridge, A. W. (2021). NanoClick: A high throughput, target-agnostic peptide cell permeability assay. ACS Chemical Biology, 16, 293–309.

    Google Scholar 

  • Peng, F., Tu, Y., Adhikari, A., Hintzen, J. C., Lowik, D. W., & Wilson, D. A. (2017). A peptide functionalized nanomotor as an efficient cell penetrating tool. Chemical Communications (Cambridge, England), 53, 1088–1091.

    Article  PubMed  Google Scholar 

  • Peraro, L., & Kritzer, J. A. (2018). Emerging methods and design principles for cell-penetrant peptides. Angewandte Chemie (International Edition in English), 57, 11868–11881.

    Article  Google Scholar 

  • Peyressatre, M., Laure, A., Pellerano, M., Boukhaddaoui, H., Soussi, I., & Morris, M. C. (2020). Fluorescent biosensor of CDK5 kinase activity in glioblastoma cell extracts and living cells. Biotechnology Journal, e1900474.

    Google Scholar 

  • Poillot, C., Bichraoui, H., Tisseyre, C., Bahemberae, E., Andreotti, N., Sabatier, J. M., Ronjat, M., & de Waard, M. (2012). Small efficient cell-penetrating peptides derived from scorpion toxin maurocalcine. The Journal of Biological Chemistry, 287, 17331–17342.

    Article  PubMed  PubMed Central  Google Scholar 

  • Polyakov, V., Sharma, V., Dahlheimer, J. L., Pica, C. M., Luker, G. D., & Piwnica-Worms, D. (2000). Novel Tat-peptide chelates for direct transduction of technetium-99m and rhenium into human cells for imaging and radiotherapy. Bioconjugate Chemistry, 11, 762–771.

    Article  PubMed  Google Scholar 

  • Pooga, M., Hällbrink, M., Zorko, M., & Langel, Ü. (1998). Cell penetration by transportan. FASEB Journal, 12, 67–77.

    Article  PubMed  Google Scholar 

  • Poutiainen, P. K., Ronkko, T., Hinkkanen, A. E., Palvimo, J. J., Narvanen, A., Turhanen, P., Laatikainen, R., Weisell, J., & Pulkkinen, J. T. (2014). Firefly luciferase inhibitor-conjugated peptide quenches bioluminescence: A versatile tool for real time monitoring cellular uptake of biomolecules. Bioconjugate Chemistry, 25, 4–10.

    Article  PubMed  Google Scholar 

  • Prantner, A. M., Sharma, V., Garbow, J. R., & Piwnica-Worms, D. (2003). Synthesis and characterization of a Gd-DOTA-D-permeation peptide for magnetic resonance relaxation enhancement of intracellular targets. Molecular Imaging, 2, 333–341.

    Article  PubMed  Google Scholar 

  • Przysiecka, L., Michalska, M., Nowaczyk, G., Peplinska, B., Jesionowski, T., Schneider, R., & Jurga, S. (2016). iRGD peptide as effective transporter of CuInZnxS2+x quantum dots into human cancer cells. Colloids and Surfaces b, Biointerfaces, 146, 9–18.

    Article  PubMed  Google Scholar 

  • Pushpanathan, M., Gunasekaran, P., & Rajendhran, J. (2013). Mechanisms of the antifungal action of marine metagenome-derived peptide, MMGP1, against Candida albicans. PloS one, 8.

    Google Scholar 

  • Quinn, M. K., Gnan, N., James, S., Ninarello, A., Sciortino, F., Zaccarelli, E., & McManus, J. J. (2015). How fluorescent labelling alters the solution behaviour of proteins. Physical Chemistry Chemical Physics : PCCP, 17, 31177–31187.

    Article  PubMed  Google Scholar 

  • Rajendran, M., Yapici, E., & Miller, L. W. (2014). Lanthanide-based imaging of protein-protein interactions in live cells. Inorganic Chemistry, 53, 1839–1853.

    Article  PubMed  Google Scholar 

  • Rodrigues, M., Santos, A., de la Torre, B. G., Radis-Baptista, G., Andreu, D., & Santos, N. C. (2012). Molecular characterization of the interaction of crotamine-derived nucleolar targeting peptides with lipid membranes. Biochimica et Biophysica Acta, 1818, 2707–2717.

    Article  PubMed  Google Scholar 

  • Ruan, G., Agrawal, A., Marcus, A. I., & Nie, S. (2007). Imaging and tracking of tat peptide-conjugated quantum dots in living cells: New insights into nanoparticle uptake, intracellular transport, and vesicle shedding. Journal of the American Chemical Society, 129, 14759–14766.

    Article  PubMed  Google Scholar 

  • Ryu, J. H., Lee, A., Na, J. H., Lee, S., Ahn, H. J., Park, J. W., Ahn, C. H., Kim, B. S., Kwon, I. C., Choi, K., Youn, I., & Kim, K. (2011). Optimization of matrix metalloproteinase fluorogenic probes for osteoarthritis imaging. Amino Acids, 41, 1113–1122.

    Article  PubMed  Google Scholar 

  • Säälik, P., Elmquist, A., Hansen, M., Padari, K., Saar, K., Viht, K., Langel, Ü., & Pooga, M. (2004). Protein cargo delivery properties of cell-penetrating peptides A Comparative Study. Bioconjugate Chemistry, 15, 1246–1253.

    Article  PubMed  Google Scholar 

  • Sangtani, A., Petryayeva, E., Wu, M., Susumu, K., Oh, E., Huston, A. L., Lasarte-Aragones, G., Medintz, I. L., Algar, W. R., & Delehanty, J. B. (2018). Intracellularly actuated quantum dot-peptide-doxorubicin nanobioconjugates for controlled drug delivery via the endocytic pathway. Bioconjugate Chemistry, 29, 136–148.

    Article  PubMed  Google Scholar 

  • Sayers, E. J., Cleal, K., Eissa, N. G., Watson, P., & Jones, A. T. (2014). Distal phenylalanine modification for enhancing cellular delivery of fluorophores, proteins and quantum dots by cell penetrating peptides. Journal of Controlled Release, 195, 55–62.

    Article  PubMed  Google Scholar 

  • Segura, J., Fillat, C., Andreu, D., Llop, J., Millan, O., de la Torre, B. G., Nikolovski, Z., Gomez, V., Andreu, N., Pinyot, A., Castelo, R., Gispert, J. D., & Pascual, J. A. (2007). Monitoring gene therapy by external imaging of mRNA: Pilot study on murine erythropoietin. Therapeutic Drug Monitoring, 29, 612–618.

    Article  PubMed  Google Scholar 

  • Sousa, A. A., Morgan, J. T., Brown, P. H., Adams, A., Jayasekara, M. P., Zhang, G., Ackerson, C. J., Kruhlak, M. J., & Leapman, R. D. (2012). Synthesis, characterization, and direct intracellular imaging of ultrasmall and uniform glutathione-coated gold nanoparticles. Small (weinheim an Der Bergstrasse, Germany), 8, 2277–2286.

    Article  PubMed  Google Scholar 

  • Suh, J. S., Lee, J. Y., Lee, G., Chung, C. P., & Park, Y. J. (2014). Simultaneous imaging and restoration of cell function using cell permeable peptide probe. Biomaterials, 35, 6287–6298.

    Article  PubMed  Google Scholar 

  • Swiecicki, J. M., di Pisa, M., Burlina, F., Lecorche, P., Mansuy, C., Chassaing, G., & Lavielle, S. (2015). Accumulation of cell-penetrating peptides in large unilamellar vesicles: A straightforward screening assay for investigating the internalization mechanism. Biopolymers, 104, 533–543.

    Article  PubMed  Google Scholar 

  • Thoren, P. E., Persson, D., Esbjorner, E. K., Goksor, M., Lincoln, P., & Norden, B. (2004). Membrane binding and translocation of cell-penetrating peptides. Biochemistry, 43, 3471–3489.

    Article  PubMed  Google Scholar 

  • Tisseyre, C., Ahmadi, M., Bacot, S., Dardevet, L., Perret, P., Ronjat, M., Fagret, D., Usson, Y., Ghezzi, C., & de Waard, M. (2014). Quantitative evaluation of the cell penetrating properties of an iodinated Tyr-L-maurocalcine analog. Biochimica et Biophysica Acta, 1843, 2356–2364.

    Article  PubMed  Google Scholar 

  • Walsh, S. J., Iegre, J., Seki, H., Bargh, J. D., Sore, H. F., Parker, J. S., Carroll, J. S., & Spring, D. R. (2020). General dual functionalisation of biomacromolecules via a cysteine bridging strategy. Organic & Biomolecular Chemistry, 18, 4224–4230.

    Article  Google Scholar 

  • Weiss, H. M., Wirz, B., Schweitzer, A., Amstutz, R., Rodriguez Perez, M. I., Andres, H., Metz, Y., Gardiner, J., & Seebach, D. (2007). ADME investigations of unnatural peptides: distribution of a 14C-labeled beta 3-octaarginine in rats. Chemistry & Biodiversity, 4, 1413–1437.

    Google Scholar 

  • Xia, M. C., Cai, L., Zhang, S., & Zhang, X. (2018). A cell-penetrating ratiometric probe for simultaneous measurement of lysosomal and cytosolic pH change. Talanta, 178, 355–361.

    Article  PubMed  Google Scholar 

  • Xu, J., Xiang, Q., Su, J., Yang, P., Zhang, Q., Su, Z., Xiao, F., & Huang, Y. (2014). Evaluation of the safety and brain-related tissues distribution characteristics of TAT-HaFGF via intranasal administration. Biological & Pharmaceutical Bulletin, 37, 1149–1157.

    Article  Google Scholar 

  • Yong K.-T. (2010). Biophotonics and biotechnology in pancreatic cancer: Cyclic RGD-peptide-conjugated type II quantum dots for in vivo imaging. Pancreatology, 10, 553–564.

    Google Scholar 

  • Yukawa, H., Suzuki, K., Kano, Y., Yamada, T., Kaji, N., Ishikawa, T., & Baba, Y. (2013). Induced pluripotent stem cell labeling using quantum dots. Cell Medicine, 6, 83–90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zamaleeva, A. I., Despras, G., Luccardini, C., Collot, M., de Waard, M., Oheim, M., Mallet, J. M., & Feltz, A. (2015). FRET-based nanobiosensors for imaging intracellular Ca(2)(+) and H(+) microdomains. Sensors, 15, 24662–24680.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Yuan, Y., Liu, Z., Chen, H., Chen, D., Fang, X., Zheng, J., Qin, W., & Wu, C. (2018). Brightness enhancement of near-infrared semiconducting polymer dots for in vivo whole-body cell tracking in deep organs. ACS Applied Materials & Interfaces, 10, 26928–26935.

    Article  Google Scholar 

  • Zhou, J., Li, Y., Huang, W., Shi, W., & Qian, H. (2021). Source and exploration of the peptides used to construct peptide-drug conjugates. European Journal of Medicinal Chemistry, 224, 113712.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ülo Langel .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Langel, Ü. (2023). Labeling of CPPs. In: CPP, Cell-Penetrating Peptides. Springer, Cham. https://doi.org/10.1007/978-3-031-38731-9_4

Download citation

Publish with us

Policies and ethics