Skip to main content

On Electrical Spiking of Ganoderma Resinaceum

  • Chapter
  • First Online:
Fungal Machines

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 47))

  • 250 Accesses

Abstract

Fungi exhibit action-potential like spiking activity. Up to date most electrical activity of oyster fungi has been characterised in sufficient detail. It remains unclear if there are any patterns of electrical activity specific only for a certain set of species or if all fungi share the same ‘language’ of electrical signalling. We use pairs of differential electrodes to record extracellular electrical activity of the antler-like sporocarps of the polypore fungus Ganoderma resinaceum. The patterns of the electrical activity are analysed in terms of frequency of spiking and parameters of the spikes. The indicators of the propagation of electrical activity are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In 1995 Olsson and Hansson demonstrated spontaneous action potential like activity in a hypha of Pleurotus ostreatus and Armillaria bulbosa (synonymous with A. gallica and A. lutea) via intra-cellular recording with a reference electrode in an agar substrate [27]. Our present results concern extracellular recordings, therefore we will not compare thee with Olsson and Hansson results.

References

  1. Bohte, S.M.: The evidence for neural information processing with precise spike-times: a survey. Nat. Comput. 3, 195–206 (2004)

    Google Scholar 

  2. Cooper, D.C.: The significance of action potential bursting in the brain reward circuit. Neurochem. Int. 41(5), 333–340 (2002)

    Google Scholar 

  3. Maass, W., et al.: Computing with spikes. Special Issue on Found. Inf. Process. TELEMATIK 8(1), 32–36 (2002)

    Google Scholar 

  4. Debanne, D., Bialowas, A., Rama, S.: What are the mechanisms for analogue and digital signalling in the brain? Nat. Rev. Neurosci. 14(1), 63–69 (2013)

    Article  Google Scholar 

  5. Trebacz, K., Dziubinska, H., Krol, E.: Electrical signals in long-distance communication in plants. In: Communication in Plants, pp. 277–290. Springer, Berlin (2006)

    Google Scholar 

  6. Fromm, J., Lautner, S.: Electrical signals and their physiological significance in plants. Plant, Cell Environ. 30(3), 249–257 (2007)

    Article  Google Scholar 

  7. Zimmermann, M.R., Mithöfer, A.: Electrical long-distance signaling in plants. In: Long-Distance Systemic Signaling and Communication in Plants, pp. 291–308. Springer, Berlin (2013)

    Google Scholar 

  8. Simons, P.J.: The role of electricity in plant movements. New Phytol. 87(1), 11–37 (1981)

    Article  Google Scholar 

  9. Fromm, J.: Control of phloem unloading by action potentials in mimosa. Physiol. Plant. 83(3), 529–533 (1991)

    Article  Google Scholar 

  10. Sibaoka, T.: Rapid plant movements triggered by action potentials. Bot. Mag.= Shokubutsu-gaku-zasshi 104(1), 73–95 (1991)

    Google Scholar 

  11. Volkov, A.G., Foster, J.C., Ashby, T.A., Walker, R.K., Johnson, J.A., Markin, V.S.: Mimosa pudica: electrical and mechanical stimulation of plant movements. Plant, Cell Environ. 33(2), 163–173 (2010)

    Google Scholar 

  12. Minorsky, P.V.: Temperature sensing by plants: a review and hypothesis. Plant, Cell Environ. 12(2), 119–135 (1989)

    Article  Google Scholar 

  13. Volkov, A.G.: Green plants: electrochemical interfaces. J. Electroanal. Chem. 483(1–2), 150–156 (2000)

    Google Scholar 

  14. Roblin, G.: Analysis of the variation potential induced by wounding in plants. Plant Cell Physiol. 26(3), 455–461 (1985)

    Article  Google Scholar 

  15. Pickard, B.G.: Action potentials in higher plants. Bot. Rev. 39(2), 172–201 (1973)

    Google Scholar 

  16. Berbara, R.L.L., Morris, B.M., Fonseca, H.M.A.C., Reid, B., Gow, N.A.R., Daft, M.J.: Electrical currents associated with arbuscular mycorrhizal interactions. New Phytol. 129(3), 433–438 (1995)

    Article  Google Scholar 

  17. Iwamura, T.: Correlations between protoplasmic streaming and bioelectric potential of a slime mold, Physarum polycephalum. Shokubutsugaku Zasshi 62(735–736), 126–131 (1949)

    Article  Google Scholar 

  18. Kamiya, N., Abe, S.: Bioelectric phenomena in the myxomycete plasmodium and their relation to protoplasmic flow. J. Colloid Sci. 5(2), 149–163 (1950)

    Article  Google Scholar 

  19. Kishimoto, U.: Rhythmicity in the protoplasmic streaming of a slime mold, Physarum polycephalum. I. a statistical analysis of the electric potential rhythm. J. Gen. Physiol. 41(6), 1205–1222 (1958)

    Google Scholar 

  20. Meyer, R., Stockem, W.: Studies on microplasmodia of Physarum polycephalum V: electrical activity of different types of microplasmodia and macroplasmodia. Cell Biol. Int. Rep. 3(4), 321–330 (1979)

    Article  Google Scholar 

  21. Adamatzky, A.: Slime mould tactile sensor. Sens. Actuators, B Chem. 188, 38–44 (2013)

    Article  Google Scholar 

  22. Adamatzky, A.: Towards slime mould colour sensor: recognition of colours by Physarum polycephalum. Org. Electron. 14(12), 3355–3361 (2013)

    Article  Google Scholar 

  23. Whiting, J.G.H., de Lacy Costello, B.P., Adamatzky, A.: Towards slime mould chemical sensor: mapping chemical inputs onto electrical potential dynamics of Physarum Polycephalum. Sens. Actuators B: Chem. 191, 844–853 (2014)

    Google Scholar 

  24. Whiting, J.G.H., de Lacy Costello, B.P., Adamatzky, A.: Sensory fusion in Physarum polycephalum and implementing multi-sensory functional computation. Biosystems 119, 45–52 (2014)

    Google Scholar 

  25. Adamatzky, A., Neil, P.: Physarum sensor: biosensor for citizen scientists (2017)

    Google Scholar 

  26. Slayman, C.L., Long, W.S., Gradmann, D.: “Action potentials” in Neurospora crassa, a mycelial fungus. Biochim. Biophys. Acta (BBA)—Biomembr. 426(4), 732–744 (1976)

    Google Scholar 

  27. Olsson, S., Hansson, B.S.: Action potential-like activity found in fungal mycelia is sensitive to stimulation. Naturwissenschaften 82(1), 30–31 (1995)

    Article  Google Scholar 

  28. Adamatzky, A.: On spiking behaviour of oyster fungi pleurotus djamor. Sci. Rep. 8(1), 1–7 (2018)

    Article  MathSciNet  Google Scholar 

  29. Dehshibi, M.M., Adamatzky, A.: Electrical activity of fungi: spikes detection and complexity analysis. Biosystems 203, 104373 (2021)

    Article  Google Scholar 

  30. Adamatzky, A., Gandia, A., Chiolerio, A.: Fungal sensing skin. Fungal Biol. Biotechnol. 8(1), 1–6 (2021)

    Google Scholar 

  31. Jaffe, L.F.: Fast calcium waves. Cell Calcium 48(2–3), 102–113 (2010)

    Google Scholar 

  32. Adamatzky, A., Schubert, T.: Slime mold microfluidic logical gates. Mater. Today 17(2), 86–91 (2014)

    Article  Google Scholar 

  33. Whiting, J.G.H., de Lacy Costello, B.P., Adamatzky, A.: Slime mould logic gates based on frequency changes of electrical potential oscillation. Biosystems 124, 21–25 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adamatzky, A., Gandia, A. (2023). On Electrical Spiking of Ganoderma Resinaceum. In: Adamatzky, A. (eds) Fungal Machines. Emergence, Complexity and Computation, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-031-38336-6_2

Download citation

Publish with us

Policies and ethics