Skip to main content

Fungal Capacitors

  • Chapter
  • First Online:
Fungal Machines

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 47))

  • 267 Accesses

Abstract

The emerging field of living technologies aims to create new functional hybrid materials in which living systems interface and interact with inanimate ones. Combining research into living technologies with emerging developments in computing architecture has enabled the generation of organic electronics from plants and slime mould. Here, we expand on this work by studying capacitive properties of a substrate colonised by mycelium of grey oyster fungi, Pleurotus ostreatus. Capacitors play a fundamental role in traditional analogue and digital electronic systems and have a range of uses including sensing, energy storage and filter circuits. Mycelium has the potential to be used as an organic replacement for traditional capacitor technology. Here, wer show that the capacitance of mycelium is in the order of hundreds of picofarads and at the same time a voltage-dependent pseudocapacitance of the order of hundreds of microfarads. We also demonstrate that the charge density of the mycelium ‘dielectric’ decays rapidly with increasing distance from the source probes. This is important as it indicates that small cells of mycelium could be used as a charge carrier or storage medium, when employed as part of an array with reasonable density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamatzky, A.: Advances in Unconventional Computing. Springer (2016)

    Google Scholar 

  2. Bedau, M.A., McCaskill, J.S., Packard, N.H., Rasmussen, S.: Living technology: exploiting life’s principles in technology. Artif. Life 16(1), 89–97 (2010)

    Google Scholar 

  3. Stavrinidou, E., Gabrielsson, R., Gomez, E., Crispin, X., Nilson, O., Simon, D.T., Berggren, M.: Electronic plants. Sci. Adv. 1(10), 1–8 (2015)

    Article  Google Scholar 

  4. Leger, J.M.: Organic electronics: the ions have it. Adv. Mater. 20(4), 837–841 (2008)

    Article  Google Scholar 

  5. Marien, H., Steyaert, M., Heremans, P.: Analog Organic Electronics. Springer (2013)

    Google Scholar 

  6. Zschieschang, U., Klauk, H.: Organic transistors on paper: a brief review. J. Mater. Chem. C 7, 5522–5533 (2019)

    Article  Google Scholar 

  7. Tokito, S.: Flexible printed organic thin-film transistor devices and integrated circuit applications. In: 2018 International Flexible Electronics Technology Conference (IFETC), pp. 1–2, Aug. 2018

    Google Scholar 

  8. Endoh, H., Toguchi, S., Kudo, K.: High performance vertical-type organic transistors and organic light emitting transistors. In: Polytronic 2007—6th International Conference on Polymers and Adhesives in Microelectronics and Photonics, pp. 139–142, Jan. 2007

    Google Scholar 

  9. Tang, W., Zhao, J., Li, Q., Guo, X.: Highly sensitive low power ion-sensitive organic thin-film transistors. In: 2018 9th International Conference on Computer Aided Design for Thin-Film Transistors (CAD-TFT), pp. 1–1, Nov. 2018

    Google Scholar 

  10. Sano, T., Suzuri, Y., Koden, M., Yuki, T., Nakada, H., Kido, J.: Organic light emitting diodes for lighting applications. In: 2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), vol. 26th, pp. 1–4, July 2019

    Google Scholar 

  11. Mizukami, M., Cho, S., Watanabe, K., Abiko, M., Suzuri, Y., Tokito, S., Kido, J.: Flexible organic light-emitting diode displays driven by inkjet-printed high-mobility organic thin-film transistors. IEEE Electron Device Lett. 39(1), 39–42 (2018)

    Google Scholar 

  12. Li, W.H., Ding, K., Tian, H.R., Yao, M.S., Nath, B., Deng, W.H., Wang, Y., Xu, G.: Conductive metal-organic framework nanowire array electrodes for high performance solid state supercapacitors. Adv. Funct. Mater 27, 1702067 (2017)

    Google Scholar 

  13. Sangermano, M., Vitale, A., Razza, N., Favetto, A., Paleari, M., Ariano, P.: Multilayer UV-cured organic capacitors. Polymer 56, 131–134 (2015)

    Article  Google Scholar 

  14. Morimoto, T., Tsushima, M., Suhara, M., Hiratsuka, K., Sanada, Y., Kawasato, T.: Electric double- layer capacitor using organic electrolyte. MRS Proc. 496, 627 (1997)

    Article  Google Scholar 

  15. Beasley, A.E., Bowen, C.R., Zabek, D.A., Clarke, C.T.: Use it or lose it: the influence of second order effects of practical components on storing energy harvested by pyroelectric effects. Tech. Mess. 85(9), 522–540 (2017)

    Google Scholar 

  16. Vadasz, L.L., Chua, H.T., Grove, A.S.: Semiconductor random-access memories. IEEE Spectr. 8(5), 40–48 (1971)

    Google Scholar 

  17. Lu, W., Lieber, C.M.: Nanoelectronics from the bottom up. Nanosci. Technol.: A Collect. Rev. Nat. J. 137–146. World Scientific (2010)

    Google Scholar 

  18. Beausoleil, R.G., Kuekes, P.J., Snider, G.S., Wang, S.-Y., Williams, R.S.: Nanoelectronic and nanophotonic interconnect. Proc. IEEE 96(2), 230–247 (2008)

    Google Scholar 

  19. McAdams, E.T., Jossinet, J.: Tissue impedance: a historical overview. Physiol. Meas. 16(3A), A1 (1995)

    Article  Google Scholar 

  20. Chloupek, O.: Evaluation of the size of a plant’s root system using its electrical capacitance. Plant Soil 48(2), 525–532 (1977)

    Article  Google Scholar 

  21. Rajkai, K., Végh, K.R., Nacsa, T.: Electrical capacitance as the indicator of root size and activity. Agrokémia és Talajtan 51(1–2), 89–98 (2002)

    Google Scholar 

  22. Sohn, L.L., Saleh, O.A., Facer, G.R., Beavis, A.J., Allan, R.S., Notterman, D.A.: Capacitance cytometry: measuring biological cells one by one. Proc. Nat. Acad. Sci. 97(20), 10687–10690 (2000)

    Google Scholar 

  23. Blackman, C.J., Brodribb, T.J.: Two measures of leaf capacitance: insights into the water transport pathway and hydraulic conductance in leaves. Funct. Plant Biol. 38(2), 118–126 (2011)

    Google Scholar 

  24. Zhang, M.I.N., Willison, J.H.M., Cox, M.A., Hall, S.A.: Measurement of heat injury in plant tissue by using electrical impedance analysis. Can. J. Bot. 71(12), 1605–1611 (1993)

    Article  Google Scholar 

  25. Paul Allen Williams and Subrata Saha: The electrical and dielectric properties of human bone tissue and their relationship with density and bone mineral content. Ann. Biomed. Eng. 24(2), 222–233 (1996)

    Article  Google Scholar 

  26. Bhosale, A.A., Sundaram, K.K.: Firmness prediction of the apple using capacitance measurement. Procedia Technol. 12, 163–167 (2014)

    Article  Google Scholar 

  27. Bhosale, A.A.: Detection of sugar contents in citrus fruits by capacitance method. In: 10th International Conference Interdisciplinarity in Engineering, INTER-ENG 2016, pp. 466–471 (2016)

    Google Scholar 

  28. Zachariah, G., Erickson, L.C.: Evaluation of Some Physical Methods for Determining Avocado Maturity, vol. 49. California Avocado Society (1965)

    Google Scholar 

  29. Boyce, S.T., Supp, A.P., Harriger, M.D., Pickens, W.L., Wickett, R.R., Hoath, S.B.: Surface electrical capacitance as a noninvasive index of epidermal barrier in cultured skin substitutes in athymic mice. J. Invest. Dermatol. 107(1), 82–87 (1996)

    Google Scholar 

  30. Rituper, B., Guček, A., Jorgačevski, J., Flašker, A., Kreft, M., Zorec, R.: High-resolution membrane capacitance measurements for the study of exocytosis and endocytosis. Nat. Protoc. 8(6), 1169 (2013)

    Article  Google Scholar 

  31. Fehrenbach, R., Comberbach, M., Petre, J.O.: On-line biomass monitoring by capacitance measurement. J. Biotechnol. 23(3), 303–314 (1992)

    Article  Google Scholar 

  32. Neves, A.A., Pereira, D.A., Vieira, L.M., Menezes, J.C.: Real time monitoring biomass concentration in streptomyces clavuligerus cultivations with industrial media using a capacitance probe. J. Biotechnol. 84(1), 45–52 (2000)

    Google Scholar 

  33. Sarra, M., Ison, A.P., Lilly, M.D.: The relationships between biomass concentration, determined by a capacitance-based probe, rheology and morphology of saccharopolyspora erythraea cultures. J. Biotechnol. 51(2), 157–165 (1996)

    Article  Google Scholar 

  34. Carlile, M.J., Watkinson, S.C., Gooday, G.W.: The Fungi. Gulf Professional Publishing (2001)

    Google Scholar 

  35. Smith, M.L., Bruhn, J.N., Anderson, J.B.: The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356(6368), 428 (1992)

    Google Scholar 

  36. Bahn, Y.-S., Xue, C., Idnurm, A., Rutherford, J.C., Heitman, J., Cardenas, M.E.: Sensing the environment: lessons from fungi. Nat. Rev. Microbiol. 5(1), 57 (2007)

    Google Scholar 

  37. Kung, C.: A possible unifying principle for mechanosensation. Nature 436(7051), 647 (2005)

    Article  Google Scholar 

  38. Adamatzky, A., Tuszynski, J., Pieper, J., Nicolau, D.V., Rinalndi, R., Sirakoulis, G., Erokhin, V., Schnauss, J., Smith, D.M.: Towards cytoskeleton computers. A proposal. In: Adamatzky, A., Akl, S., Sirakoulis G (eds.) From Parallel to Emergent Computing. CRC Group/Taylor & Francis (2019)

    Google Scholar 

  39. Ross, P.: Your rotten future will be great. The Routledge Companion to Biology in Art and Architecture, p 252 (2016)

    Google Scholar 

  40. Appels, F.V.W., Camere, S., Montalti, M., Karana, E., Jansen, K.M.B., Dijksterhuis, J., Krijgsheld, P., Wösten, H.A.B.: Fabrication factors influencing mechanical, moisture-and water-related properties of mycelium-based composites. Mater. Des. 161, 64–71 (2019)

    Google Scholar 

  41. Dahmen, J.: Soft matter: responsive architectural operations. Technoetic Arts 14(1–2), 113–125 (2016)

    Article  Google Scholar 

  42. Adamatzky, A., Ayres, P., Belotti, G., Wösten, H.: Fungal architecture position paper. Int. J. Unconvn. Comput. 14, (2019)

    Google Scholar 

  43. Dulik, M., Jurecka, S.: Measuring capacitance of various types of structures. In: 2014 ELEKTRO, pp. 640–644 (2014)

    Google Scholar 

  44. Battistoni, S., Dimonte, A., Erokhin, V.: Organic memristor based elements for bio-inspired computing. In: Advances in Unconventional Computing, pp. 469–496. Springer (2017)

    Google Scholar 

  45. Cifarelli, A., Berzina, T., Erokhin, V.: Bio-organic memristive device: polyaniline–physarum polycephalum interface. Physica Status Solidi (c) 12(1–2), 218–221 (2015)

    Google Scholar 

  46. Yoo, J.E., Bucholz, T.L., Jung, S., Loo, Y.-L.: Narrowing the size distribution of the polymer acid improves pani conductivity. J. Mater. Chem. 18(26):3129–3135, 2008

    Google Scholar 

  47. Howard, G.D., Bull, L., de Lacy Costello, B., Adamatzky, A., Erokhin, V.: A spice model of the peo-pani memristor. Int. J. Bifurc. Chaos 23(06), 1350112 (2013)

    Google Scholar 

  48. Demin, V.A., Erokhin, V.V., Kashkarov, P.K., Kovalchuk, M.V.: Electrochemical model of polyaniline-based memristor with mass transfer step. In: AIP Conference Proceedings, vol. 1648, p. 280005. AIP Publishing LLC (2015)

    Google Scholar 

  49. Berzina, T., Smerieri, A., Bernabò, M., Pucci, A., Ruggeri, G., Erokhin, V., Fontana, M.P.: Optimization of an organic memristor as an adaptive memory element. J. Appl. Phys. 105(12), 124515 (2009)

    Google Scholar 

  50. Lapkin, D.A., Emelyanov, A.V., Demin, V.A., Berzina, T.S., Erokhin, V.V.: Spike-timing-dependent plasticity of polyaniline-based memristive element. Microelectron. Eng. 185, 43–47 (2018)

    Article  Google Scholar 

  51. Gizzie, N., Mayne, R., Patton, D., Kendrick, P., Adamatzky, A.: On hybridising lettuce seedlings with nanoparticles and the resultant effects on the organisms’ electrical characteristics. Biosystems 147, 28–34 (2016)

    Google Scholar 

  52. Gizzie, N., Mayne, R., Yitzchaik, S., Ikbal, M., Adamatzky, A.: Living wires—effects of size and coating of gold nanoparticles in altering the electrical properties of Physarum polycephalum and lettuce seedlings. Nano LIFE 1(6), 1650001 (2015)

    Google Scholar 

  53. Dong, B., He, B.-L., Cai-Ling, X., Li, H.-L.: Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor. Mater. Sci. Eng. B 143(1–3), 7–13 (2007)

    Article  Google Scholar 

  54. Frackowiak, E., Khomenko, V., Jurewicz, K., Lota, K., Béguin, F.: Supercapacitors based on conducting polymers/nanotubes composites. J. Power Sour. 153(2), 413–418 (2006)

    Article  Google Scholar 

  55. Boddy, L., Wells, J.M., Culshaw, C., Donnelly, D.P.: Fractal analysis in studies of mycelium in soil. Geoderma 88(3), 301–328 (1999)

    Google Scholar 

  56. Ha Thi Hoa and Chun-Li Wang: The effects of temperature and nutritional conditions on mycelium growth of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 43(1), 14–23 (2015)

    Article  Google Scholar 

  57. Rayner, A.D.M.: The challenge of the individualistic mycelium. Mycologia 48–71 (1991)

    Google Scholar 

  58. Regalado, C.M., Crawford, J.W., Ritz, K., Sleeman, B.D.: The origins of spatial heterogeneity in vegetative mycelia: a reaction-diffusion model. Mycol. Res. 100(12), 1473–1480 (1996)

    Article  Google Scholar 

  59. Ritz, K.: Growth responses of some soil fungi to spatially heterogeneous nutrients. FEMS Microbiol. Ecol. 16(4), 269–279 (1995)

    Article  Google Scholar 

  60. Ozdemir, H., Kepkep, A., Pamir, B., Leblebici, Y., Cilingiroglu, U.: A capacitive threshold-logic gate. IEEE J. Solid-State Cir. 31(8), 1141–1150 (1996)

    Article  Google Scholar 

  61. Medina-Santiago, A., Reyes-Barranca, M.A., Algredo-Badillo, I., Cruz, A.M., Gutiérrez, K.A.R., Cortés-Barrón, A.E.: Reconfigurable arithmetic logic unit designed with threshold logic gates. IET Circuits Devices Syst. 13(1), 21–30 (2018)

    Google Scholar 

  62. Pillonnet, G., Fanet, H., Houri, S.: Adiabatic capacitive logic: a paradigm for low-power logic. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4. IEEE

    Google Scholar 

  63. Wang, Z., Rao, M., Han, J.-W., Zhang, J., Lin, P., Li, Y., Li, C., Song, W., Asapu, S., Midya, R., et al.: Capacitive neural network with neuro-transistors. Nat. Commun. 9(1), 1–10 (2018)

    Google Scholar 

Download references

Acknowledgements

Authors thank professor Kapela Pilaka for numerous valuable comments and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Szaciłowski, K., Beasley, A.E., Mech, K., Adamatzky, A. (2023). Fungal Capacitors. In: Adamatzky, A. (eds) Fungal Machines. Emergence, Complexity and Computation, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-031-38336-6_14

Download citation

Publish with us

Policies and ethics