Skip to main content

Electrical Response of Fungi to Changing Moisture Content

  • Chapter
  • First Online:
Fungal Machines

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 47))

  • 249 Accesses

Abstract

Mycelium-bound composites are potential alternatives to conventional materials for a variety of applications, including thermal and acoustic building panels and product packaging. If the reactions of live mycelium to environmental conditions and stimuli are taken into account, it is possible to create functioning fungal materials. Thus, active building components, sensory wearables, etc. might be created. This research describes the electrical sensitivity of fungus to changes in the moisture content of a mycelium-bound composite. Trains of electrical spikes initiate spontaneously in fresh mycelium-bound composites with a moisture content between \(\sim \)95 and \(\sim \)65%, and between \(\sim \)15 and \(\sim \)5% when partially dried. When the surfaces of mycelium-bound composites were partially or totally encased with an impermeable layer, increased electrical activity was observed. In fresh mycelium-bound composites, electrical spikes were seen both spontaneously and when induced by water droplets on the surface. Also explored is the link between electrical activity and electrode depth. Future designs of smart buildings, wearables, fungi-based sensors, and unconventional computer systems may benefit from fungi configurations and biofabrication flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://mycelia.be/shop/m9726-ganoderma-resinaceum/

References

  1. Karana, E., Blauwhoff, D., Hultink, E.-J., Camere, S.: When the material grows: A case study on designing (with) mycelium-based materials. Int. J. Des. 12(2) (2018)

    Google Scholar 

  2. Jones, M., Mautner, A., Luenco, S., Bismarck, A., John, S.: Engineered mycelium composite construction materials from fungal biorefineries: a critical review. Mater. Des. 187, 108397 (2020)

    Article  Google Scholar 

  3. Cerimi, K., Akkaya, K.C., Pohl, C., Schmidt, B., Neubauer, P.: Fungi as source for new bio-based materials: a patent review. Fungal Biol. Biotechnol. 6(1), 1–10 (2019)

    Google Scholar 

  4. Javadian, A., Ferrand, H.L., Hebel, D., Saeidi, N.: Application of mycelium-bound composite materials in construction industry: a short review. SOJ Mater. Sci. Eng. 7, 1–9, 10 (2020)

    Google Scholar 

  5. Yang, Z., Zhang, F., Still, B., White, M., Amstislavski, P.: Physical and mechanical properties of fungal mycelium-based biofoam. J. Mater. Civil Eng. 29(7), 04017030 (2017)

    Article  Google Scholar 

  6. Xing, Y., Brewer, M., El-Gharabawy, H., Griffith, G., Jones, P.: Growing and testing mycelium bricks as building insulation materials. In: IOP Conference Series: Earth and Environmental Science, vol. 121, p. 022032. IOP Publishing (2018)

    Google Scholar 

  7. Girometta, C., Picco, A.M., Baiguera, R.M., Dondi, D., Babbini, S., Cartabia, M., Pellegrini, M., Savino, E.: Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: a review. Sustainability 11(1), 281 (2019)

    Google Scholar 

  8. Dias, P.P., Jayasinghe, L.B., Waldmann, D.: Investigation of mycelium-miscanthus composites as building insulation material. Res. Mater. 10, 100189 (2021)

    Google Scholar 

  9. Wang, F., LI, H.-G., Kang, S.-S., Bai, Y.-F., Cheng, G.-Z., Zhang, G.-Q.: The experimental study of mycelium/expanded perlite thermal insulation composite material for buildings. Sci. Technol. Eng. 2016, 20 (2016)

    Google Scholar 

  10. Cárdenas-R., J.P.: Thermal insulation biomaterial based on hydrangea macrophylla. In: Bio-Based Materials and Biotechnologies for Eco-Efficient Construction, pp. 187–201. Elsevier (2020)

    Google Scholar 

  11. Pelletier, M.G., Holt, G.A., Wanjura, J.D., Bayer, E., McIntyre, G.: An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates. Ind. Crops Prod. 51, 480–485 (2013)

    Google Scholar 

  12. Elsacker, E., Vandelook, S., Van Wylick, A., Ruytinx, J., De Laet, L., Peeters, E.: A comprehensive framework for the production of mycelium-based lignocellulosic composites. Sci. Total Environ. 725, 138431 (2020)

    Article  Google Scholar 

  13. Robertson, O. et al.: Fungal future: a review of mycelium biocomposites as an ecological alternative insulation material. In: DS 101: Proceedings of NordDesign 2020, Lyngby, Denmark, 12th–14th Aug. 2020, pp. 1–13 (2020)

    Google Scholar 

  14. Holt, G.A., Mcintyre, G., Flagg, D., Bayer, E., Wanjura, J.D., Pelletier, M.G.: Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: evaluation study of select blends of cotton byproducts. J. Biobased Mater. Bioenergy 6(4), 431–439 (2012)

    Google Scholar 

  15. Sivaprasad, S., Byju, S.K., Prajith, C., Shaju, J., Rejeesh, C.R.: Development of a novel mycelium bio-composite material to substitute for polystyrene in packaging applications. Mater. Today: Proc. (2021)

    Google Scholar 

  16. Mojumdar, A., Behera, H.T., Ray, L.: Mushroom mycelia-based material: an environmental friendly alternative to synthetic packaging. Microbial Polymers, pp. 131–141 (2021)

    Google Scholar 

  17. Nikolaidou, A., Phllips, N., Tsompanas, M.-A., Adamatzky, A.: Reactive fungal insoles. BioRxiv (2022)

    Google Scholar 

  18. Adamatzky, A., Nikolaidou, A., Gandia, A., Chiolerio, A., Dehshibi, M.M.: Reactive fungal wearable. Biosystems 199, 104304 (2021)

    Article  Google Scholar 

  19. Silverman, J., Cao, H., Cobb, K.: Development of mushroom mycelium composites for footwear products. Cloth. Text. Res. J. 38(2), 119–133 (2020)

    Article  Google Scholar 

  20. Appels, F.V.W.: The use of fungal mycelium for the production of bio-based materials. Ph.D. thesis, Universiteit Utrecht (2020)

    Google Scholar 

  21. Jones, M., Gandia, A., John, S., Bismarck, A.: Leather-like material biofabrication using fungi. Nat. Sustain. 1–8 (2020)

    Google Scholar 

  22. Gandia, A., van den Brandhof, J., Appels, F..V..W., Jones, M.P., Shaping the future: Flexible fungal materials. Trends Biotechnol. 39, 1321–1331 (2021)

    Article  Google Scholar 

  23. Meyer, V.: Merging science and art through fungi (2019)

    Google Scholar 

  24. Sydor, M., Bonenberg, A., Doczekalska, B., Cofta, G.: Mycelium-based composites in art, architecture, and interior design: a review. Polymers 14(1), 145 (2022)

    Article  Google Scholar 

  25. Ivanova, N.: Fungi for material futures: the role of design. In: Fungal Biopolymers and Biocomposites: Prospects and Avenues, pp. 209–251. Springer (2022)

    Google Scholar 

  26. van den Brandhof, J.G., Wösten, H.A.B.: Risk assessment of fungal materials. Fungal Biol. Biotechnol. 9, 3 (2022)

    Google Scholar 

  27. Adamatzky, A., Ayres, P., Belotti, G., Wösten, H.: Fungal architecture position paper. Int. J. Unconven. Comput. 14 (2019)

    Google Scholar 

  28. Roberts, N., Adamatzky, A.: Mining logical circuits in fungi. Sci. Rep. 12, 09 (2022)

    Article  Google Scholar 

  29. Beasley, A.E., Powell, A.L., Adamatzky, A.: Capacitive storage in mycelium substrate (2020). arXiv:2003.07816

  30. Beasley, A.E., Abdelouahab, M.-S., Lozi, R., Powell, A.L., Adamatzky, A.: Mem-fractive properties of mushrooms (2020). arXiv:2002.06413

  31. Beasley, AE., Powell, A.L., Adamatzky: Fungal Photosensors (2020). arXiv:2003.07825

  32. Adamatzky, A., Tegelaar, M., Wosten, H.A.B., Powell, A.L., Beasley, A.E., Mayne, R.: On boolean gates in fungal colony. Biosystems 193, 104138 (2020)

    Google Scholar 

  33. Adamatzky, A., Gandia, A., Ayres, P., Wösten, H., Tegelaar, M.: Adaptive fungal architectures. LINKs-Series 5, 66–77

    Google Scholar 

  34. Adamatzky, A., Gandia, A.: Living mycelium composites discern weights via patterns of electrical activity. J. Bioresour. Bioprod. 7(1), 26–32 (2022)

    Article  Google Scholar 

  35. Olsson, S., Hansson, B.S.: Action potential-like activity found in fungal mycelia is sensitive to stimulation. Naturwissenschaften 82(1), 30–31 (1995)

    Article  Google Scholar 

  36. Adamatzky, A.: On spiking behaviour of oyster fungi pleurotus djamor. Sci. Rep. 8(1), 1–7 (2018)

    Article  MathSciNet  Google Scholar 

  37. Adamatzky, A., Tuszynski, J., Pieper, J., Nicolau, D.V., Rinalndi, R., Sirakoulis, G., Erokhin, V., Schnauss, J., Smith, D.M.: Towards cytoskeleton computers. A proposal. In: Adamatzky, A., Akl, S., Sirakoulis, G. (eds.), From Parallel to Emergent Computing. CRC Group/Taylor & Francis (2019)

    Google Scholar 

  38. Cano-Chauca, M., Ramos, A.M., Stringheta, P.C., Pereira, J.A.M.: Drying curves and water activity evaluation of dried banana. In: Drying 2004-Proceedings of the 14th International Drying Symposium (IDS 2004), São Paulo, Brazil, pp. 22–25 (2004)

    Google Scholar 

  39. Sharma, B., Sharma, K.: Studies of drying curves for different vegetables in cabinet dryer. Int. J. Chem. Stud. 9, 523–527 (2021)

    Google Scholar 

  40. Villela, F., Silva, W.R.: Drying curve of corn seeds by the intermittent method. Scientia Agricola 49, 145–153 (1991)

    Google Scholar 

  41. Hustrulid, A., Flikke, A.M.: Theoretical drying curve for shelled corn. Trans. ASAE 2, 112–114 (1959)

    Google Scholar 

  42. Shabala, S., Shabala, L., Gradmann, D., Chen, Z., Newman, I., Mancuso, S.: Oscillations in plant membrane transport: model predictions, experimental validation, and physiological implications. J. Exp. Botany 57(1), 171–184 (2005)

    Google Scholar 

  43. Allen, M.: Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J. 6, 291–297 (2007)

    Google Scholar 

  44. Garcia-Rubio, R., Oliveira, H., Rivera, J., Trevijano-Contador, N.: The fungal cell wall: Candida, cryptococcus, and aspergillus species. Front. Microbiol. 10, 2993 (2020)

    Google Scholar 

  45. Fukasawa, Y., Akai, D., Ushio, M., Takehi, T.: Mushroom’s electrical conversation after the rain. SSRN 4091460 (2022)

    Google Scholar 

  46. Oguntoyinbo, B., Ozawa, T., Kawabata, K., Hirama, J., Yanagibashi, H., Matsui, Y., Kurahashi, A., Shimoda, T., Taniguchi, M., Nishibori, K.: SMA (speaking mushroom approach) environmental control system development: automated cultivation control system characterization, vol. 53, Mar. 2012

    Google Scholar 

  47. Sydor, M., Cofta, G., Doczekalska, B., Bonenberg, A.: Fungi in mycelium-based composites: usage and recommendations. Materials 15(18), 6283 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Tempcon Instrumentation Ltd for guidance on moisture probe HOBO EC-5 and data logger station HOBO H21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Phillips .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Phillips, N., Gandia, A., Adamatzky, A. (2023). Electrical Response of Fungi to Changing Moisture Content. In: Adamatzky, A. (eds) Fungal Machines. Emergence, Complexity and Computation, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-031-38336-6_12

Download citation

Publish with us

Policies and ethics