Skip to main content

Abstract

In recent years, sustainable power supply has become a necessary asset for the daily survival and development of populations. The incentive to the use of renewable energies has been increasing worldwide. Solar energy, in particular, is widespreading fast in countries whose location allows to obtain excellent radiation conditions. In this work, autonomous photovoltaic (PV) systems are studied, having as main aim its application in the supply of urban loads. For this purpose, a PV system is designed to supply the decorative lighting of a monument. Particular emphasis is given to studying the behavior of the energy storage system. The achieved results demonstrate that the use of this type of systems is a very efficient solution for the municipalities to supply several urban loads such as fountains, traffic lights, decorative lighting, among others.

This research presents the results of a training course framed in the project: Energy Transition Entrepreneurs in Action (ETEIA), funded by the European Institute of Innovation and Technology (EIT) under the HEI Initiative: Innovation Capacity Building for Higher Education. HEI Grant Agreement N 10036.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akram, F., Asghar, F., Majeed, M.A., Amjad, W., Manzoor, M.O., Munir, A.: Techno-economic optimization analysis of stand-alone renewable energy system for remote areas. Sustain. Energy Technol. Assess. 38 (2020)

    Google Scholar 

  2. Baptista, J., Morais, R.: Fundamentos de Energia Solar Fotovoltaica. Vila Real, Série Didática, Ciências Aplicadas 383. Edição do Núcleo Editorial e Gráfico dos SDB da UTAD (2010)

    Google Scholar 

  3. Chakrabarty, S., Islam, T.: Financial viability and eco-efficiency of the solar home systems (SHS) in Bangladesh. Energy 36(8), 4821–4827 (2011)

    Article  Google Scholar 

  4. Corrêa, F.C., et al.: Desenvolvimento e análise de estratégias de gerenciamento de potência em veículo elétrico híbrido de configuração paralela (2013)

    Google Scholar 

  5. El Shenawy, E., Hegazy, A., Abdellatef, M.: Design and optimization of stand-alone PV system for Egyptian rural communities. Int. J. Appl. Eng. Res. 12(20), 10433–10446 (2017)

    Google Scholar 

  6. European Commission Joint Research Centre: JRC Photovoltaic Geographical Information System (PVGIS) (SD-B). https://re.jrc.ec.europa.eu/pvg_tools/en/#MR

  7. Freitas, S.S.A.: Dimensionamento de sistemas fotovoltaicos. Ph.D. thesis, Instituto Politécnico de Bragança, Escola Superior de Tecnologia e de Gestão (2008)

    Google Scholar 

  8. Junior, J.U., Tiepolo, G.M., Junior, E.F.C., Tonin, F.S., Mariano, J.D.: Geração distribuída fotovoltaica: O caso dos sistemas fotovoltaicos da utfpr em curitiba. In: Congresso Brasileiro de Planejamento Energético. Gramado-RS (2016)

    Google Scholar 

  9. Kaundinya, D.P., Balachandra, P., Ravindranath, N.H.: Grid-connected versus stand-alone energy systems for decentralized power—a review of literature. Renew. Sustain. Energy Rev. 13(8), 2041–2050 (2009)

    Article  Google Scholar 

  10. Kurbonov, Y.M., Saitov, E., Botirov, B.: Analysis of the influence of temperature on the operating mode of a photovoltaic solar station. In: IOP Conference Series: Earth and Environmental Science, vol. 614, p. 012034. IOP Publishing (2020)

    Google Scholar 

  11. Larminie, J., Lowry, J.: Electric Vehicle Technology Explained. Wiley, Hoboken (2012)

    Book  Google Scholar 

  12. Lopes, R.J.C.: Efeito do sombreamento nos painéis fotovoltaicos. Ph.D. thesis, Instituto Superior de Engenharia de Lisboa (2013)

    Google Scholar 

  13. Ministério da Economia e da Inovação: Rtiebt - regras técnicas das instalações eléctricas de baixa tensão. https://dre.pt/application/conteudo/303262

  14. Mohamed, S.A., Abd El Sattar, M.: A comparative study of P &O and INC maximum power point tracking techniques for grid-connected PV systems. SN Appl. Sci. 1(2), 174 (2019)

    Google Scholar 

  15. Wassie, Y.T., Adaramola, M.S.: Socio-economic and environmental impacts of rural electrification with solar photovoltaic systems: evidence from southern Ethiopia. Energy Sustain. Dev. 60, 52–66 (2021)

    Article  Google Scholar 

  16. Zubi, G., Dufo-López, R., Pasaoglu, G., Pardo, N.: Techno-economic assessment of an off-grid PV system for developing regions to provide electricity for basic domestic needs: a 2020–2040 scenario. Appl. Energy 176, 309–319 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Pinto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vidal, D., Pinto, T., Baptista, J. (2023). Sizing of Urban Power Systems Based on Renewable Sources. In: Mehmood, R., et al. Distributed Computing and Artificial Intelligence, Special Sessions I, 20th International Conference. DCAI 2023. Lecture Notes in Networks and Systems, vol 741. Springer, Cham. https://doi.org/10.1007/978-3-031-38318-2_26

Download citation

Publish with us

Policies and ethics