Skip to main content

Learning Lagrangian Fluid Mechanics with E(3)-Equivariant Graph Neural Networks

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14072))

Included in the following conference series:

Abstract

We contribute to the vastly growing field of machine learning for engineering systems by demonstrating that equivariant graph neural networks have the potential to learn more accurate dynamic-interaction models than their non-equivariant counterparts. We benchmark two well-studied fluid-flow systems, namely 3D decaying Taylor-Green vortex and 3D reverse Poiseuille flow, and evaluate the models based on different performance measures, such as kinetic energy or Sinkhorn distance. In addition, we investigate different embedding methods of physical-information histories for equivariant models. We find that while currently being rather slow to train and evaluate, equivariant models with our proposed history embeddings learn more accurate physical interactions.

Our code will be released under https://github.com/tumaer/sph-hae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adami, S., Hu, X., Adams, N.A.: A transport-velocity formulation for smoothed particle hydrodynamics. J. Comput. Phys. 241, 292–307 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Batatia, I., Kovács, D.P., Simm, G.N.C., Ortner, C., Csányi, G.: Mace: higher order equivariant message passing neural networks for fast and accurate force fields (2022)

    Google Scholar 

  3. Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph networks. arXiv (2018)

    Google Scholar 

  4. Batzner, S., et al.: E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun. 13(1), 2453 (2022)

    Article  Google Scholar 

  5. Brachet, M.E., Meiron, D., Orszag, S., Nickel, B., Morf, R., Frisch, U.: The taylor-green vortex and fully developed turbulence. J. Stat. Phys. 34(5–6), 1049–1063 (1984)

    Article  MathSciNet  Google Scholar 

  6. Bradbury, J., et al.: JAX: composable transformations of Python+NumPy programs (2018)

    Google Scholar 

  7. Brandstetter, J., Berg, R.V.D., Welling, M., Gupta, J.K.: Clifford neural layers for PDE modeling. arXiv preprint arXiv:2209.04934 (2022)

  8. Brandstetter, J., Hesselink, R., van der Pol, E., Bekkers, E.J., Welling, M.: Geometric and physical quantities improve E(3) equivariant message passing. In: ICLR (2022)

    Google Scholar 

  9. Brandstetter, J., Worrall, D.E., Welling, M.: Message passing neural PDE solvers. In: ICLR (2022)

    Google Scholar 

  10. Cohen, T.S., Welling, M.: Group equivariant convolutional networks. In: Proceedings of the 33rd ICML, ICML 2016, vol. 48, pp. 2990–2999. JMLR.org (2016)

    Google Scholar 

  11. Fedosov, D.A., Caswell, B., Em Karniadakis, G.: Reverse poiseuille flow: the numerical viscometer. In: AIP Conference Proceedings, vol. 1027, pp. 1432–1434. American Institute of Physics (2008)

    Google Scholar 

  12. Gasteiger, J., Becker, F., Günnemann, S.: Gemnet: universal directional graph neural networks for molecules. NeurIPS 34, 6790–6802 (2021)

    Google Scholar 

  13. Gasteiger, J., Groß, J., Günnemann, S.: Directional message passing for molecular graphs. In: ICLR (2020)

    Google Scholar 

  14. Geiger, M., Smidt, T.: e3nn: Euclidean neural networks (2022)

    Google Scholar 

  15. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: ICML, pp. 1263–1272. PMLR (2017)

    Google Scholar 

  16. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181(3), 375–389 (1977)

    Article  MATH  Google Scholar 

  17. Gupta, J.K., Brandstetter, J.: Towards multi-spatiotemporal-scale generalized PDE modeling. arXiv preprint arXiv:2209.15616 (2022)

  18. Hu, W., Pan, W., Rakhsha, M., Tian, Q., Hu, H., Negrut, D.: A consistent multi-resolution smoothed particle hydrodynamics method. Comput. Methods Appl. Mech. Eng. 324, 278–299 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lagrave, P.Y., Tron, E.: Equivariant neural networks and differential invariants theory for solving partial differential equations. In: Physical Sciences Forum, vol. 5, p. 13. MDPI (2022)

    Google Scholar 

  20. Li, Z., et al.: Neural operator: graph kernel network for partial differential equations. arXiv preprint arXiv:2003.03485 (2020)

  21. Li, Z., et al.: Fourier neural operator for parametric partial differential equations. In: ICLR (2021)

    Google Scholar 

  22. Lu, L., Jin, P., Karniadakis, G.E.: DeepONet: learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. arXiv preprint arXiv:1910.03193 (2019)

  23. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)

    Article  Google Scholar 

  24. Mayr, A., Lehner, S., Mayrhofer, A., Kloss, C., Hochreiter, S., Brandstetter, J.: Boundary graph neural networks for 3D simulations. arXiv preprint arXiv:2106.11299 (2021)

  25. Pezzicoli, F.S., Charpiat, G., Landes, F.P.: Se (3)-equivariant graph neural networks for learning glassy liquids representations. arXiv:2211.03226 (2022)

  26. Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., Battaglia, P.W.: Learning mesh-based simulation with graph networks. arXiv preprint arXiv:2010.03409 (2020)

  27. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  28. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ruhe, D., Brandstetter, J., Forré, P.: Clifford group equivariant neural networks. arXiv preprint arXiv:2305.11141 (2023)

  30. Ruhe, D., Gupta, J.K., de Keninck, S., Welling, M., Brandstetter, J.: Geometric clifford algebra networks. arXiv preprint arXiv:2302.06594 (2023)

  31. Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., Battaglia, P.: Learning to simulate complex physics with graph networks. In: ICML, pp. 8459–8468. PMLR (2020)

    Google Scholar 

  32. Satorras, V.G., Hoogeboom, E., Welling, M.: E(n) equivariant graph neural networks. In: ICML, pp. 9323–9332. PMLR (2021)

    Google Scholar 

  33. Schoenholz, S.S., Cubuk, E.D.: JAX M.D. a framework for differentiable physics. In: NeurIPS, vol. 33. Curran Associates, Inc. (2020)

    Google Scholar 

  34. Taylor, G.I., Green, A.E.: Mechanism of the production of small eddies from large ones. Proc. Roy. Soc. London Ser. A Math. Phys. Sci. 158(895), 499–521 (1937)

    Google Scholar 

  35. Thomas, N., et al.: Tensor field networks: rotation- and translation-equivariant neural networks for 3D point clouds. CoRR abs/1802.08219 (2018)

    Google Scholar 

  36. Violeau, D., Rogers, B.D.: Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future. J. Hydraul. Res. 54(1), 1–26 (2016)

    Article  Google Scholar 

  37. Wang, R., Walters, R., Yu, R.: Incorporating symmetry into deep dynamics models for improved generalization. In: ICLR (2021)

    Google Scholar 

  38. Weiler, M., Geiger, M., Welling, M., Boomsma, W., Cohen, T.S.: 3D steerable CNNs: learning rotationally equivariant features in volumetric data. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) NeurIPS, vol. 31. Curran Associates, Inc. (2018)

    Google Scholar 

  39. Weiler, M., Geiger, M., Welling, M., Boomsma, W., Cohen, T.S.: 3D steerable CNNs: learning rotationally equivariant features in volumetric data. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  40. Weirather, J., et al.: A smoothed particle hydrodynamics model for laser beam melting of NI-based alloy 718. CMA 78(7), 2377–2394 (2019)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We are thankful to the developers of the e3nn-jax library [14], which offers efficient implementations of E(3)-equivariant building blocks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur P. Toshev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Toshev, A.P., Galletti, G., Brandstetter, J., Adami, S., Adams, N.A. (2023). Learning Lagrangian Fluid Mechanics with E(3)-Equivariant Graph Neural Networks. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2023. Lecture Notes in Computer Science, vol 14072. Springer, Cham. https://doi.org/10.1007/978-3-031-38299-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38299-4_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38298-7

  • Online ISBN: 978-3-031-38299-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics