Skip to main content

Pilot Scale Tannin Extraction from Chestnut Wood Waste Using Hydrodynamic Cavitation

  • Conference paper
  • First Online:
Towards a Smart, Resilient and Sustainable Industry (ISIEA 2023)

Abstract

Tannins, extracted from various plant sources, are worldwide commodities used in several different fields, including leather manufacturing and the production of bio-based adhesives, with emerging use in technical, environmental, food and feed sectors, pharmacology. Due to increasing market demand, few emerging techniques were proposed besides the conventional hot water extraction usually performed under pressurized conditions. For the first time, hydrodynamic cavitation, an emerging and straightforwardly scalable green extraction technique, was applied to the extraction of tannins from chestnut wood waste in water only and at room pressure, without any pretreatment of the raw material except for mild grinding. Promising performances were shown based on tests carried out from room temperature up to 100 ℃. Extraction rates close to 300 mg of tannin per gram of chestnut wood material (dry basis) were achieved, as well as high levels of the DPPH antioxidant activity of the obtained extract (IC50 up to about 2.45 μg of extracted tannin, corresponding to 10.8 μg of chestnut wood waste, per mL of solution). The proposed technique allows ample room for improvement with regards to process time, extraction rate and specific energy consumption, and suitable for both small-scale and industrial extraction facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pizzi, A.: Tannins: prospectives and actual industrial applications. Biomolecules 9, 344 (2019). https://doi.org/10.3390/biom9080344

    Article  Google Scholar 

  2. Dhawale, P.V., et al.: Tannin as a renewable raw material for adhesive applications: a review. Mater. Adv. 3(8), 3365–3388 (2022). https://doi.org/10.1039/d1ma00841b

    Article  Google Scholar 

  3. Koopmann, A.K., et al.: Tannin-based hybrid materials and their applications: a review. Molecules 25, 4910 (2020). https://doi.org/10.3390/molecules25214910

    Article  Google Scholar 

  4. Shirmohammadli, Y., Efhamisisi, D., Pizzi, A.: Tannins as a sustainable raw material for green chemistry: a review. Ind. Crops Prod. 126, 316–332 (2018). https://doi.org/10.1016/j.indcrop.2018.10.034

    Article  Google Scholar 

  5. Molino, S., Casanova, N.A., Rufián Henares, J.A., Fernandez Miyakawa, M.E.: Natural tannin wood extracts as a potential food ingredient in the food industry J. Agric. Food Chem. 68, 2836–2848 (2020) . https://doi.org/10.1021/acs.jafc.9b00590

  6. Tannin Market Size, Share & Trends Analysis Report By Sources (Plants, Brown Algae), By Product (Hydrolysable, Non-hydrolysable, Phlorotannins), By Application (Leather Tanning, Wine Production, Wood Adhesives), & Segment Forecasts, 2014 - 2025, San Francisco (2021). https://www.grandviewresearch.com/industry-analysis/tannin-market. Accessed 16 Feb 2023

  7. Fraga-Corral, M., et al.: By-products of agri-food industry as tannin-rich sources: a review of tannins’ biological activities and their potential for valorization. Foods 10, 137 (2021). https://doi.org/10.3390/foods10010137

    Article  Google Scholar 

  8. Pizzi, A.: Tannins medical/pharmacological and related applications: a critical review. Sustain. Chem. Pharm. 22, 100481 (2021). https://doi.org/10.1016/j.scp.2021.100481

    Article  Google Scholar 

  9. Banc, R., Rusu, M.E., Filip, L., Popa, D.S.: The impact of ellagitannins and their metabolites through gut microbiome on the gut health and brain wellness within the gut–brain axis. Foods 12, 270 (2023). https://doi.org/10.3390/foods12020270

    Article  Google Scholar 

  10. Mattioli, L.B., Corazza, I., Micucci, M., Pallavicini, M., Budriesi, R.: Tannins-based extracts: effects on gut chicken spontaneous contractility. Molecules 28, 395 (2023). https://doi.org/10.3390/molecules28010395

    Article  Google Scholar 

  11. Aires, A., Carvalho, R., Saavedra, M.J.: Valorization of solid wastes from chestnut industry processing: extraction and optimization of polyphenols, tannins and ellagitannins and its potential for adhesives, cosmetic and pharmaceutical industry. Waste Manage. 48, 457–464 (2016). https://doi.org/10.1016/j.wasman.2015.11.019

    Article  Google Scholar 

  12. Molino, S., Fernández-Miyakawa, M., Giovando, S., Rufián-Henares, J.Á.: Study of antioxidant capacity and metabolization of quebracho and chestnut tannins through in vitro gastrointestinal digestion-fermentation. J. Funct. Foods 49, 188–195 (2018). https://doi.org/10.1016/j.jff.2018.07.056

    Article  Google Scholar 

  13. Cesprini, E., et al.: Chemical characterization of cherry (Prunus avium) extract in comparison with commercial mimosa and chestnut tannins. Wood Sci. Technol. 56, 1455–1473 (2022). https://doi.org/10.1007/s00226-022-01401-1

    Article  Google Scholar 

  14. Brizi, C., et al.: Neuroprotective effects of castanea sativa mill bark extract in human neuroblastoma cells subjected to oxidative stress. J. Cell. Biochem. 117, 510–520 (2016). https://doi.org/10.1002/jcb.25302

    Article  Google Scholar 

  15. Santulli, C., et al.: Castanea sativa mill. Bark extract protects U-373 MG cells and rat brain slices against ischemia and reperfusion injury. J. Cell. Biochem. 118 (2017) 839–850. https://doi.org/10.1002/jcb.25760

  16. Budriesi, R., et al.: Liver and intestinal protective effects of castanea sativa mill. Bark extract in high-fat diet rats. PLoS One 13, e0201540 (2018). https://doi.org/10.1371/journal.pone.0201540

  17. Meneguzzo, F., Albanese, L., Zabini, F.: Hydrodynamic cavitation in beer and other beverage processing. In: Reference Module in Food Science, Elsevier, pp. 369–394 (2020). https://doi.org/10.1016/b978-0-08-100596-5.23022-9

  18. Pagliaro, M., Albanese, L., Scurria, A., Zabini, F., Meneguzzo, F., Ciriminna, R.: Tannin: a new insight into a key product for the bioeconomy in forest regions. biofuels Bioprod. Biorefining 15, 973–979 (2021). https://doi.org/10.1002/bbb.2217

    Article  Google Scholar 

  19. Das, A.K., Islam, M.N., Faruk, M.O., Ashaduzzaman, M., Dungani, R.: Review on tannins: extraction processes, applications and possibilities. S. Afr. J. Bot. 135, 58–70 (2020). https://doi.org/10.1016/j.sajb.2020.08.008

    Article  Google Scholar 

  20. Fraga-Corral, M., et al.: Technological application of tannin-based extracts. Molecules 25, 1–27 (2020). https://doi.org/10.3390/molecules25030614

    Article  Google Scholar 

  21. Hassim, N., Markom, M., Rosli, M.I., Harun, S.: Scale-up approach for supercritical fluid extraction with ethanol–water modified carbon dioxide on Phyllanthus niruri for safe enriched herbal extracts. Sci. Rep. 11, 1–19 (2021). https://doi.org/10.1038/s41598-021-95222-0

    Article  Google Scholar 

  22. Vergara-Salinas, J.R., et al.: Effect of pressurized hot water extraction on antioxidants from grape pomace before and after enological fermentation. J. Agric. Food Chem. 61, 6929–6936 (2013). https://doi.org/10.1021/jf4010143

    Article  Google Scholar 

  23. Ravber, M., Knez, Ž, Škerget, M.: Isolation of phenolic compounds from larch wood waste using pressurized hot water: extraction, analysis and economic evaluation. Cellulose 22(5), 3359–3375 (2015). https://doi.org/10.1007/s10570-015-0719-7

    Article  Google Scholar 

  24. Naima, R., et al.: Comparison of the impact of different extraction methods on polyphenols yields and tannins extracted from Moroccan Acacia mollissima barks. Ind. Crops Prod. 70, 245–252 (2015). https://doi.org/10.1016/j.indcrop.2015.03.016

    Article  Google Scholar 

  25. Tomasi, I.T., Santos, S.C.R., Boaventura, R.A.R., Botelho, C.M.S.: Microwave-assisted extraction of polyphenols from eucalyptus bark—a first step for a green production of tannin-based coagulants. Water (Basel) 15, 317 (2023). https://doi.org/10.3390/w15020317

    Article  Google Scholar 

  26. de Hoyos-Martínez, P.L., Merle, J., Labidi, J., Charrier–El Bouhtoury, F.: Tannins extraction: a key point for their valorization and cleaner production. J. Clean Prod. 206, 1138–1155 (2019). https://doi.org/10.1016/j.jclepro.2018.09.243

  27. Cravotto, C., et al.: Bioactive antioxidant compounds from chestnut peels through semi-industrial subcritical water extraction. Antioxidants 11, 988 (2022). https://doi.org/10.3390/antiox11050988

    Article  Google Scholar 

  28. Gagić, T., Knez, Ž, Škerget, M.: Subcritical water extraction of horse chestnut (Aesculus hippocastanum) tree parts. J. Serb. Chem. Soc. 86, 603–613 (2021). https://doi.org/10.2298/JSC201111013G

    Article  Google Scholar 

  29. Aimone, C., Grillo, G., Boffa, L., Giovando, S., Cravotto, G.: Tannin extraction from chestnut wood waste: from lab scale to semi-industrial plant. Appl. Sci. 13, 2494 (2023). https://doi.org/10.3390/APP13042494

    Article  Google Scholar 

  30. Meneguzzo, F., et al.: Real-scale integral valorization of waste orange peel via hydrodynamic cavitation. Processes 7, 581 (2019). https://doi.org/10.3390/pr7090581

    Article  Google Scholar 

  31. Folin, O., Ciocalteu, V.: On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 73, 627–650 (1927). https://doi.org/10.1016/s0021-9258(18)84277-6

    Article  Google Scholar 

  32. Romani, A., Vignolini, P., Isolani, L., Ieri, F., Heimler, D.: HPLC-DAD/MS characterization of flavonoids and hydroxycinnamic derivatives in turnip tops (Brassica rapa L. Subsp. sylvestris L.). J. Agric. Food Chem. 54, 1342–1346 (2006). https://doi.org/10.1021/jf052629x

  33. Faraloni, C., Albanese, L., Zittelli, G.C., Meneguzzo, F., Tagliavento, L., Zabini, F.: New route to the production of almond beverages using hydrodynamic cavitation. Foods 12, 935 (2023). https://doi.org/10.3390/FOODS12050935

    Article  Google Scholar 

  34. Albanese, L., Baronti, S., Liguori, F., Meneguzzo, F., Barbaro, P., Vaccari, F.P.: Hydrodynamic cavitation as an energy efficient process to increase biochar surface area and porosity: a case study. J. Clean. Prod. 210, 159–169 (2019). https://doi.org/10.1016/J.JCLEPRO.2018.10.341

    Article  Google Scholar 

Download references

Acknowledgements

Giacomo Navarra (Montagne Fiorentine Model Forest Association, Londa, Firenze, Italy) and Tani Sawmill (Segheria Tani, Borgo San Lorenzo, FI, Italy) are gratefully acknowledged for the donation in kind of chestnut wood waste. Francesco Centritto is thanked for his technical assistance in the pretreatment of the wood material. Paolo Giusti, (company CDR S.r.l., Florence, Italy) is gratefully acknowledged for his invaluable technical support with the measurement of tannin content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Meneguzzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meneguzzo, F., Albanese, L., Faraloni, C., Meneguzzo, C., Tagliavento, L., Zabini, F. (2023). Pilot Scale Tannin Extraction from Chestnut Wood Waste Using Hydrodynamic Cavitation. In: Borgianni, Y., Matt, D.T., Molinaro, M., Orzes, G. (eds) Towards a Smart, Resilient and Sustainable Industry. ISIEA 2023. Lecture Notes in Networks and Systems, vol 745. Springer, Cham. https://doi.org/10.1007/978-3-031-38274-1_36

Download citation

Publish with us

Policies and ethics