Skip to main content

Functional Properties of PDE-Based Group Equivariant Convolutional Neural Networks

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14071))

Included in the following conference series:

Abstract

We build on the recently introduced PDE-G-CNN framework, which proposed the concept of non-linear morphological convolutions that are motivated by solving HJB-PDEs on lifted homogeneous spaces such as the homogeneous space of 2D positions and orientations isomorphic to \(G=SE(2)\). PDE-G-CNNs generalize G-CNNs and are provably equivariant to actions of the roto-translation group SE(2). Moreover, PDE-G-CNNs automate geometric image processing via orientation scores and allow for a meaningful geometric interpretation.

In this article, we show various functional properties of these networks:

  1. (1.)

    PDE-G-CNNs satisfy crucial geometric and algebraic symmetries: they are semiring quasilinear, equivariant, invariant under time scaling, isometric, and are solved by semiring group convolutions.

  2. (2.)

    PDE-G-CNNs exhibit a high degree of data efficiency: even under limited availability of training data they show a distinct gain in performance and generalize to unseen test cases from different datasets.

  3. (3.)

    PDE-G-CNNs are extendable to well-known convolutional architectures. We explore a UNet variant of PDE-G-CNNs which has a new equivariant U-Net structure with PDE-based morphological convolutions.

We verify the properties and show favorable results on various datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Convections and dilations/diffusion do not commute on the non-commutative G, and the desirable order is first convection and then dilation/diffusion [4, App. B, Prop. 3].

References

  1. Aguado Lopez, J., et al.: Semigroup theory in quantum mechanics. In: Escuela-Taller de Análisis Funcional, vol. VIII (2018)

    Google Scholar 

  2. Balogh, Z.M., Engulatov, A., Hunziker, L., Maasalo, O.E.: Functional inequalities and Hamilton-Jacobi equations in geodesic spaces. Potential Anal. 36(2), 317–337 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bekkers, E.J., Lafarge, M.W., Veta, M., Eppenhof, K.A.J., Pluim, J.P.W., Duits, R.: Roto-translation covariant convolutional networks for medical image analysis. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 440–448. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_50

    Chapter  Google Scholar 

  4. Bellaard, G., Bon, D.L., Pai, G., Smets, B.M., Duits, R.: Analysis of (sub-) Riemannian PDE-G-CNNs. J. Math. Imaging Vis., 1–25 (2023). https://doi.org/10.1007/s10851-023-01147-w

  5. Bellaard, G., Pai, G., Bescos, J.O., Duits, R.: Geometric adaptations of PDE-G-CNNs. In: Calatroni, L., Donatelli, M., Morigi, S., Prato, M., Santacesaria, M. (eds.) Scale Space and Variational Methods in Computer Vision, SSVM 2023. LNCS, vol. 14009, pp. 538–550. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-31975-4_41

  6. Cervantes-Sanchez, F., Cruz-Aceves, I., Hernandez-Aguirre, A., Hernandez-Gonzalez, M.A., Solorio-Meza, S.E.: Automatic segmentation of coronary arteries in X-ray angiograms using multiscale analysis and artificial neural networks. Appl. Sci. 9(24), 5507 (2019)

    Article  Google Scholar 

  7. Citti, G., Sarti, A.: A cortical based model of perceptional completion in the roto-translation space. JMIV 24(3), 307–326 (2006)

    Article  MATH  Google Scholar 

  8. Cohen, T.S., Weiler, M., Kicanaoglu, B., Welling, M.: Gauge equivariant convolutional networks and the icosahedral CNN. In: Chaudhuri, K., Salakhutdinov, R. (eds.) ICML, pp. 1321–1330. PMLR (2019)

    Google Scholar 

  9. Davidson, J.L., Hummer, F.: Morphology neural networks: an introduction with applications. Circ. Syst. Sig. Process. 12(2), 177–210 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duits, R., Florack, L., de Graaf, J., et al.: On the axioms of scale space theory. JMIV 20, 267–298 (2004). https://doi.org/10.1023/B:JMIV.0000024043.96722.aa

  11. Duits, R., Franken, E.: Left-invariant parabolic evolution equations on \({SE}(2)\) and contour enhancement via orientation scores. QAM-AMS 68, 255–331 (2010)

    MATH  Google Scholar 

  12. Duits, R., Smets, B., Bekkers, E., Portegies, J.: Equivariant deep learning via morphological and linear scale space PDEs on the space of positions and orientations. In: Elmoataz, A., Fadili, J., Quéau, Y., Rabin, J., Simon, L. (eds.) SSVM 2021. LNCS, vol. 12679, pp. 27–39. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75549-2_3

    Chapter  MATH  Google Scholar 

  13. Happ, L.: Lax-Oleinik semi-group and weak KAM solutions. https://www.mathi.uni-heidelberg.de/~gbenedetti/13_Happ_Talk.pdf

  14. Maragos, P., Charisopoulos, V., Theodosis, E.: Tropical geometry and machine learning. Proc. IEEE 109(5), 728–755 (2021)

    Article  Google Scholar 

  15. Petitot, J.: The neurogeometry of pinwheels as a sub-Riemannian contact structure. J. Physiol. Paris 97, 265–309 (2003)

    Article  Google Scholar 

  16. Renesse, M.: An optimal transport view on Schrödinger’s equation, pp. 1–11. arXiv (2009). https://arxiv.org/pdf/0804.4621.pdf

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Sangalli, M., Blusseau, S., Velasco-Forero, S., Angulo, J.: Scale equivariant neural networks with morphological scale-spaces. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds.) DGMM 2021. LNCS, vol. 12708, pp. 483–495. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76657-3_35

    Chapter  Google Scholar 

  19. Schmidt, M., Weickert, J.: Morphological counterparts of linear shift-invariant scale-spaces. J. Math. Imaging Vis. 56(2), 352–366 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sifre, L., Mallat, S.: Rotation, scaling and deformation invariant scattering for texture discrimination. In: IEEE-CVPR, pp. 1233–1240 (2013)

    Google Scholar 

  21. Smets, B., Portegies, J., Bekkers, E.J., Duits, R.: PDE-based group equivariant convolutional neural networks. JMIV 65, 1–31 (2022). https://doi.org/10.1007/s10851-022-01114-x

    Article  MATH  Google Scholar 

  22. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE-TMI 23(4), 501–509 (2004)

    Google Scholar 

  23. Weiler, M., Cesa, G.: General E(2)-equivariant steerable CNNs. In: Advances in Neural Information Processing Systems, pp. 14334–14345 (2019)

    Google Scholar 

  24. Yosida, K.: Functional Analysis. CM, vol. 123. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-61859-8

    Book  MATH  Google Scholar 

  25. Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics Gems, pp. 474–485 (1994)

    Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the Dutch Foundation of Science NWO for funding of VICI 2020 Exact Sciences (Duits, Geometric learning for Image Analysis VI.C. 202-031). The git repository containing the vanilla PDE-G-CNN implementations can be found at: https://gitlab.com/bsmetsjr/lietorch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Pai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pai, G., Bellaard, G., Smets, B.M.N., Duits, R. (2023). Functional Properties of PDE-Based Group Equivariant Convolutional Neural Networks. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2023. Lecture Notes in Computer Science, vol 14071. Springer, Cham. https://doi.org/10.1007/978-3-031-38271-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38271-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38270-3

  • Online ISBN: 978-3-031-38271-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics