Skip to main content

Learning Discrete Lagrangians for Variational PDEs from Data and Detection of Travelling Waves

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14071))

Included in the following conference series:

Abstract

The article shows how to learn models of dynamical systems from data which are governed by an unknown variational PDE. Rather than employing reduction techniques, we learn a discrete field theory governed by a discrete Lagrangian density \(L_d\) that is modelled as a neural network. Careful regularisation of the loss function for training \(L_d\) is necessary to obtain a field theory that is suitable for numerical computations: we derive a regularisation term which optimises the solvability of the discrete Euler–Lagrange equations. Secondly, we develop a method to find solutions to machine learned discrete field theories which constitute travelling waves of the underlying continuous PDE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen-Blanchette, C., Veer, S., Majumdar, A., Leonard, N.E.: LagNetViP: a Lagrangian neural network for video prediction. In: AAAI 2020 Symposium on Physics Guided AI (2020). https://doi.org/10.48550/ARXIV.2010.12932

  2. Bertalan, T., Dietrich, F., Mezić, I., Kevrekidis, I.G.: On learning Hamiltonian systems from data. Chaos Interdisc. J. Nonlinear Sci. 29(12), 121107 (2019). https://doi.org/10.1063/1.5128231

  3. Buchfink, P., Glas, S., Haasdonk, B.: Symplectic model reduction of Hamiltonian systems on nonlinear manifolds and approximation with weakly symplectic autoencoder. SIAM J. Sci. Comput. 45(2), A289–A311 (2023). https://doi.org/10.1137/21M1466657

    Article  MathSciNet  MATH  Google Scholar 

  4. Carlberg, K., Tuminaro, R., Boggs, P.: Preserving Lagrangian structure in nonlinear model reduction with application to structural dynamics. SIAM J. Sci. Comput. 37(2), B153–B184 (2015). https://doi.org/10.1137/140959602

    Article  MathSciNet  MATH  Google Scholar 

  5. Cranmer, M., Greydanus, S., Hoyer, S., Battaglia, P., Spergel, D., Ho, S.: Lagrangian neural networks (2020). https://doi.org/10.48550/ARXIV.2003.04630

  6. Deuflhard, P., Hohmann, A.: Numerical Analysis in Modern Scientific Computing. Springer, New York (2003). https://doi.org/10.1007/978-0-387-21584-6

  7. Dierkes, E., Flaßkamp, K.: Learning Hamiltonian systems considering system symmetries in neural networks. IFAC-PapersOnLine 54(19), 210–216 (2021). https://doi.org/10.1016/j.ifacol.2021.11.080

  8. Dierkes, E., Offen, C., Ober-Blöbaum, S., Flaßkamp, K.: Hamiltonian neural networks with automatic symmetry detection (to appear). Chaos 33 (2023). https://doi.org/10.1063/5.0142969

  9. Greydanus, S., Dzamba, M., Yosinski, J.: Hamiltonian Neural Networks. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019),https://proceedings.neurips.cc/paper/2019/file/26cd8ecadce0d4efd6cc8a8725cbd1f8-Paper.pdf

  10. Lishkova, Y., et al.: Discrete Lagrangian neural networks with automatic symmetry discovery. In: Accepted Contribution to 22nd World Congress of the International Federation of Automatic Control, Yokohama, Japan, 9–14 July 2023. IFAC-PapersOnLine (2023). https://doi.org/10.48550/ARXIV.2211.10830

  11. Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numerica 10, 357–514 (2001). https://doi.org/10.1017/S096249290100006X

    Article  MathSciNet  MATH  Google Scholar 

  12. Mason, J., Allen-Blanchette, C., Zolman, N., Davison, E., Leonard, N.: Learning interpretable dynamics from images of a freely rotating 3D rigid body (2022). https://doi.org/10.48550/ARXIV.2209.11355

  13. McLachlan, R.I., Offen, C.: Backward error analysis for variational discretisations of pdes. J. Geo. Mech. 14(3), 447–471 (2022). https://doi.org/10.3934/jgm.2022014

    Article  MathSciNet  MATH  Google Scholar 

  14. Ober-Blöbaum, S., Offen, C.: Variational learning of Euler-Lagrange dynamics from data. J. Comput. Appl. Math. 421, 114780 (2023). https://doi.org/10.1016/j.cam.2022.114780

    Article  MathSciNet  MATH  Google Scholar 

  15. Offen, C., Ober-Blöbaum, S.: Symplectic integration of learned Hamiltonian systems. Chaos Interdisc. J. Nonlinear Sci. 32(1), 013122 (2022). https://doi.org/10.1063/5.0065913

  16. Palais, R.S.: The principle of symmetric criticality. Comm. Math. Phys. 69(1), 19–30 (1979). https://projecteuclid.org:443/euclid.cmp/1103905401

  17. Qin, H.: Machine learning and serving of discrete field theories. Sci. Rep. 10(1) (2020). https://doi.org/10.1038/s41598-020-76301-0

  18. Ridderbusch, S., Offen, C., Ober-Blobaum, S., Goulart, P.: Learning ODE models with qualitative structure using Gaussian Processes. In: 2021 60th IEEE Conference on Decision and Control (CDC). IEEE (2021). https://doi.org/10.1109/cdc45484.2021.9683426

  19. Sharma, H., Kramer, B.: Preserving Lagrangian structure in data-driven reduced-order modeling of large-scale dynamical systems (2022). https://doi.org/10.48550/ARXIV.2203.06361

Download references

Acknowledgements

C. Offen acknowledges the Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen and computing time provided by the Paderborn Center for Parallel Computing (PC2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Offen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Offen, C., Ober-Blöbaum, S. (2023). Learning Discrete Lagrangians for Variational PDEs from Data and Detection of Travelling Waves. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2023. Lecture Notes in Computer Science, vol 14071. Springer, Cham. https://doi.org/10.1007/978-3-031-38271-0_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38271-0_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38270-3

  • Online ISBN: 978-3-031-38271-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics