Skip to main content

Investigation of Factors Affecting Data Transfer in Space-Air-Ground Integrated Network

  • Conference paper
  • First Online:
Proceedings of the International Workshop on Advances in Civil Aviation Systems Development (ACASD 2023)

Abstract

Communication is one of the main functions in CNS/ATM concept which are used for air traffic control and ensure air traffic safety. Using Space-Air-Ground Integrated Network (SAGIN) for data transmission requires reliable two-way communication. The report is related to the creation of methods for predicting SAGIN functioning. The issues of integration existing space, air, and ground networks for efficient interaction during heavy traffic and the choice of data transmission modes are the main topic of this study. Original models have been created for simulation data traffic in SAGIN. Models included multiple base stations, aircraft, varying numbers of Low Earth Orbit (LEO) satellites, Wireless Local Area Network (WLAN), Wide Area Network (WAN), cellular network users and were developed using NetCracker Professional 4.1 software. This work is the first to calculate quantitative characteristics of traffic in SAGIN channels. It is shown how different SAGIN architectures affect the packet travel time and the average uplink load of the base station for which the data rate dependences are obtained also. The dependences of the travel time on the number of base stations and satellites have been calculated. The influence of bit errors and the probability of packet loss on the satellite is studied. The dependences of the average load of the uplink on the size of transactions for a different number of network users are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manual on the Aeronautical Mobile Satellite Service. Doc.9925-EN. ICAO, NY (2010)

    Google Scholar 

  2. Wood, P.: Status of international standards for aeronautical satellite communications. In: 5th International Conference on Satellite Systems for Mobile Communications and Navigation. IET, London (1996). https://doi.org/10.1049/cp:19960439

  3. Liu, J., Shi, Y., Fadlullah, Z.M., Kato, N.: Space-air-ground integrated network: a survey. IEEE Commun. Surv. Tutorials 20(4), 2714–2741 (2018). https://doi.org/10.1109/comst.2018.2841996

    Article  Google Scholar 

  4. Ray, P.P.: A review on 6G for space-air-ground integrated network: key enablers, open challenges, and future direction. J. King Saud Univ. – Comput. Inf. Sci. 34(9), 6949–6976 (2021). https://doi.org/10.1016/j.jksuci.2021.08.014

    Article  Google Scholar 

  5. Kharchenko, V., Barabanov, Y., Grekhov, A.: Modeling of satellite channel for transmission of ADS-B messages. Proc. Nat. Aviat. Univ. 52(3), 9–14 (2012). https://doi.org/10.18372/2306-1472.52.2342

  6. Kharchenko, V., Bo, W., Grekhov, A., Kovalenko, M.: Investigation of ADS-B messages traffic via satellite communication channel. Proc. Nat. Aviat. Univ. 61(4), 7–13 (2014). https://doi.org/10.18372/2306-1472.61.7580

    Article  Google Scholar 

  7. Iridium-next, Spaceflight 101. Hosted payloads. Global ADS-B, Homepage. https://spaceflight101.com/spacecraft/iridium-next. Accessed 06 Apr 2023

  8. Grekhov, A.: Recent Advances in Satellite Aeronautical Communications Modeling. IGI Global, USA (2019). https://doi.org/10.4018/978-1-5225-8214-4

  9. Grekhov, A.: Modeling of aircraft data transmission via satellites. In: Research Anthology on Reliability and Safety in Aviation Systems, Spacecraft, and Air Transport, pp. 187–236. IGI Global, USA (2021)

    Google Scholar 

  10. Li, Z., et al.: Energy efficient resource allocation for UAV-assisted space-air-ground internet of remote things networks. IEEE Access 7, 145348–145362 (2019). https://doi.org/10.1109/access.2019.2945478

    Article  Google Scholar 

  11. Marchese, M., Moheddine, A., Patrone, F.: IoT and UAV integration in 5G hybrid terrestrial-satellite networks. Sensors 19(17), 3704 (2019). https://doi.org/10.3390/s19173704

    Article  Google Scholar 

  12. Khisa, S., Moh, S.: Medium access control protocols for the internet of things based on unmanned aerial vehicles: a comparative survey. Sensors 20(19), 5586 (2020). https://doi.org/10.3390/s20195586

    Article  Google Scholar 

  13. Lyu, F., Xu, W., Yuan, Q., Suto, K.: Space-air-ground integrated networks for future IoT: architecture, management, service and performance. Peer-to-Peer Netw. Appl. 14(5), 3265–3267 (2021). https://doi.org/10.1007/s12083-021-01170-x

    Article  Google Scholar 

  14. Dai, C.-Q., Li, X., Chen, Q.: Intelligent coordinated task scheduling in space-air-ground integrated network. In: 11th International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–6. IEEE, Xi’an, China (2019). https://doi.org/10.1109/wcsp.2019.8928112

  15. Kato, N., et al.: Optimizing space-air-ground integrated networks by artificial intelligence. IEEE Wirel. Commun. 26(4), 140–147 (2019). https://doi.org/10.1109/mwc.2018.1800365

    Article  Google Scholar 

  16. Liu, D., Zhang, J., Cui, J., Ng, S.X., Maunder, R.G., Hanzo, L.: Deep learning aided routing for space-air-ground integrated networks relying on real satellite, flight, and shipping data (2021). https://doi.org/10.48550/arXiv.2110.15138

  17. Tang, F., Hofner, H., Kato, N., Kaneko, K., Yamashita, Y., Hangai, M.: A deep reinforcement learning based dynamic traffic offloading in space-air-ground integrated networks (SAGIN). IEEE J. Sel. Areas Commun. 40(1), 276–289 (2021). https://doi.org/10.1109/JSAC.2021.3126073

    Article  Google Scholar 

  18. Bariah, L., et al.: RIS-assisted space-air-ground integrated networks: new horizons for flexible access and connectivity. TechRxiv. Preprint, 1–7 (2021). https://doi.org/10.36227/techrxiv.16643290.v1

  19. Alimi, I.A., Mufutau, A.O., Teixeira, A.L., Monteiro, P.P.: Performance analysis of space-air-ground integrated network (SAGIN) over an arbitrarily correlated multivariate FSO channel. Wireless Pers. Commun. 100(1), 47–66 (2018). https://doi.org/10.1007/s11277-018-5620-x

    Article  Google Scholar 

  20. Alimi, I.A., Teixeira, A.L., Monteiro, P.P.: Effects of correlated multivariate FSO channel on outage performance of space-air-ground integrated network (SAGIN). Wireless Pers. Commun. 106(1), 7–25 (2019). https://doi.org/10.1007/s11277-019-06271-8

    Article  Google Scholar 

  21. Knopp, M.T., et al.: Towards the utilization of optical ground-to-space links for low earth orbiting spacecraft. Acta Astronaut. 166, 147–155 (2020). https://doi.org/10.1016/j.actaastro.2019.10.0

    Article  Google Scholar 

  22. Zhou, Z., Feng, J., Zhang, C., Chang, Z., Zhang, Y., Huq, K.M.S.: SAGECELL: software-defined space-air-ground integrated moving cells. IEEE Commun. Mag. 56(8), 92–99 (2018). https://doi.org/10.1109/mcom.2018.1701008

    Article  Google Scholar 

  23. Ye, J., Dang, S., Shihada, B., Alouini, M.-S.: Space-air-ground integrated network: outage performance analysis. IEEE Trans. Wireless Commun. 19(12), 7897–7912 (2020). https://doi.org/10.1109/twc.2020.3017170

    Article  Google Scholar 

  24. Zhou, S., Wang, G., Zhang, S., Niu, Z., Shen, X.S.: Bidirectional mission offloading for agile space-air-ground integrated networks. IEEE Wirel. Commun. 26(2), 38–45 (2019). https://doi.org/10.1109/mwc.2019.1800290

    Article  Google Scholar 

  25. Zhang, L., Abderrahim, W., Shihada, B.: Heterogeneous traffic offloading in space-air-ground integrated networks. IEEE Access 9, 165462–165475 (2021). https://doi.org/10.1109/ACCESS.2021.3135464

    Article  Google Scholar 

  26. Wan, Y., Long, J., Liu, L., Qian, Z., Zhong, S.: Downlink aware data scheduling with delay guarantees in resource-limited leo satellite networks. Peer-to-Peer Netw. Appl. 14(5), 3291–3306 (2021). https://doi.org/10.1007/s12083-021-01128-z

    Article  Google Scholar 

  27. Jia, Z., Sheng, M., Li, J., Han, Z.: Toward data collection and transmission in 6G space–air–ground integrated networks: cooperative HAP and LEO satellite schemes. IEEE Internet Things J. 9(13), 10516–10528 (2022). https://doi.org/10.1109/JIOT.2021.3121760

    Article  Google Scholar 

  28. Wu, H., et al.: Resource management in space-air-ground integrated vehicular networks: SDN control and AI algorithm design. IEEE Wirel. Commun. 27(6), 52–60 (2020). https://doi.org/10.1109/MWC.001.2000130

    Article  Google Scholar 

  29. Niu, Z., Shen, X.S., Zhang, Q., Tang, Y.: Space-air-ground integrated vehicular network for connected and automated vehicles: challenges and solutions. Intell. Converged Netw. 1(2), 142–169 (2020). https://doi.org/10.23919/icn.2020.0009

  30. Wang, G., Zhou, S., Zhang, S., Niu, Z., Shen, X.: SFC-based service provisioning for reconfigurable space-air-ground integrated networks. IEEE J. Sel. Areas Commun. 38(7), 1478–1489 (2020). https://doi.org/10.1109/jsac.2020.2986851

    Article  Google Scholar 

  31. Grekhov, A., Kondratiuk, V., Ilnytska, S.: Data traffic modeling in RPAS/UAV networks with different architectures. Modelling 2, 210–223 (2021). https://doi.org/10.3390/modelling202001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrii Grekhov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kharchenko, V., Grekhov, A., Kondratiuk, V., Kutsenko, O. (2023). Investigation of Factors Affecting Data Transfer in Space-Air-Ground Integrated Network. In: Ostroumov, I., Zaliskyi, M. (eds) Proceedings of the International Workshop on Advances in Civil Aviation Systems Development. ACASD 2023. Lecture Notes in Networks and Systems, vol 736. Springer, Cham. https://doi.org/10.1007/978-3-031-38082-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38082-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38081-5

  • Online ISBN: 978-3-031-38082-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics