Skip to main content

MA-CC: Cross-Layer Congestion Control via Multi-agent Reinforcement Learning

  • Conference paper
  • First Online:
Intelligent Computing (SAI 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 739))

Included in the following conference series:

  • 616 Accesses

Abstract

Deep reinforcement learning (DRL) injects vigorous vitality into congestion control (CC) to efficiently utilize network capacity for Internet communication applications. Existing methods employ a single DRL-based agent to perform CC under Active Queue Management (AQM) or Transmission Control Protocol (TCP) scheme. To enable AQM and TCP to learn to work cooperatively, this paper aims to study CC from a new perspective from the multi-agent system by leveraging multi-agent reinforcement learning (MARL). To this end, we propose a MARL-based Congestion Control framework, MA-CC, which enables senders and routers to gradually learn cross-layer strategies that dynamically adjust congestion window and packet drop rate. We evaluate the proposed scheme in a typical dumbbell-like network model built on the ns-3 simulator. The results show that MA-CC outperforms traditional rule-based and learning-based congestion control algorithms by providing higher throughput while maintaining low transmission latency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasloo, S., Yen, C.Y., Chao, H.J.: Classic meets modern: a pragmatic learning-based congestion control for the internet. In: Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication, pp. 632–647 (2020)

    Google Scholar 

  2. AlWahab, D.A., Gombos, G., Laki, S.: On a deep Q-Network-based approach for active queue management. In: 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), pp. 371–376. IEEE (2021)

    Google Scholar 

  3. Brakmo, L.S., O’malley, S.W., Peterson, L.L.: TCP Vegas: new techniques for congestion detection and avoidance. In: Proceedings of the Conference on Communications Architectures, Protocols and Applications, pp. 24–35 (1994)

    Google Scholar 

  4. Cardwell, N., Cheng, Y., Gunn, C.S., Yeganeh, S.H., Jacobson, V.: BBR: congestion-based congestion control. Commun. ACM 60(2), 58–66 (2017)

    Article  Google Scholar 

  5. Carlucci, G., De Cicco, L., Holmer, S., Mascolo, S.: Analysis and design of the google congestion control for web real-time communication (WebRTC). In: Proceedings of the 7th International Conference on Multimedia Systems, MMSys 2016, New York, NY, USA. Association for Computing Machinery (2016)

    Google Scholar 

  6. Yawen Chen, Y., et al.: Reinforcement learning meets wireless networks: a layering perspective. IEEE Internet Things J. 8(1), 85–111 (2021)

    Article  Google Scholar 

  7. Dong, M., Li, Q., Zarchy, D., Godfrey, P.B., Schapira, M.: PCC: Re-architecting congestion control for consistent high performance. In: 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 15), pp. 395–408 (2015)

    Google Scholar 

  8. Dong, M., et al.: PCC vivace: online-learning congestion control. In: 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18), pp. 343–356 (2018)

    Google Scholar 

  9. Floyd, S., Henderson, T.-T., Gurtov, A.: The NewReno modification to TCP’s fast recovery algorithm. RFC 2582, 05 (1999)

    Google Scholar 

  10. Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Networking 1(4), 397–413 (1993)

    Article  Google Scholar 

  11. Fu, C.P., Liew, S.C.: TCP Veno: TCP enhancement for transmission over wireless access networks. IEEE J. Sel. Areas Commun. 21(2), 216–228 (2003)

    Article  Google Scholar 

  12. Gawłowicz, P., Zubow, A.: Ns-3 meets OpenAI gym: the playground for machine learning in networking research. In: ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM), p. 11 (2019)

    Google Scholar 

  13. Gettys, J.: Bufferbloat: dark buffers in the internet. IEEE Internet Comput. 15(3), 96 (2011)

    Article  Google Scholar 

  14. Hock, M., Neumeister, F., Zitterbart, M., Bless, R.: TCP LoLa: congestion control for low latencies and high throughput. In: 2017 IEEE 42nd Conference on Local Computer Networks (LCN), pp. 215–218. IEEE (2017)

    Google Scholar 

  15. Jacobson, V.: Modified TCP congestion avoidance algorithm. End2end Interest Mailing List (1990)

    Google Scholar 

  16. Jacobson, V.L.: Congestion avoidance and control. ACM SIGCOMM Comput. Commun. Rev. (1988)

    Google Scholar 

  17. Jiang, H., et al.: When machine learning meets congestion control: a survey and comparison. Comput. Netw. 192, 108033 (2021)

    Article  Google Scholar 

  18. Jin, C., et al.: FAST TCP: from theory to experiments. IEEE Netw. 19(1), 4–11 (2005)

    Article  Google Scholar 

  19. King, R., Baraniuk, R., Riedi, R.: TCP-Africa: an adaptive and fair rapid increase rule for scalable TCP. In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1838–1848. IEEE (2005)

    Google Scholar 

  20. Mittal, R., et al.: TIMELY: RTT-based congestion control for the datacenter. ACM SIGCOMM Comput. Commun. Rev. 45(4), 537–550 (2015)

    Article  Google Scholar 

  21. Nichols, K., Jacobson, V.: Controlling queue delay. Commun. ACM 55(7), 42–50 (2012)

    Article  Google Scholar 

  22. Nie, X., et al.: Dynamic TCP initial windows and congestion control schemes through reinforcement learning. IEEE J. Sel. Areas Commun. 37(6), 1231–1247 (2019)

    Article  Google Scholar 

  23. Pan, R., Natarajan, P., Baker, F., White, G.: A lightweight control scheme to address the bufferbloat problem. Technical report, Proportional integral controller enhanced (pie) (2017)

    Google Scholar 

  24. Yuhan, S., Huang, L., Feng, C.: QRED: a q-learning-based active queue management scheme. J. Internet Technol. 19(4), 1169–1178 (2018)

    Google Scholar 

  25. Sunehag, P., et al.: Value-decomposition networks for cooperative multi-agent learning based on team reward. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, pp. 2085–2087 (2018)

    Google Scholar 

  26. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  27. Winstein, K., Balakrishnan, H.: TCP ex machina: computer-generated congestion control. ACM SIGCOMM Comput. Commun. Rev. 43(4), 123–134 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bai, J., Zhang, T., Wang, C., Xie, G. (2023). MA-CC: Cross-Layer Congestion Control via Multi-agent Reinforcement Learning. In: Arai, K. (eds) Intelligent Computing. SAI 2023. Lecture Notes in Networks and Systems, vol 739. Springer, Cham. https://doi.org/10.1007/978-3-031-37963-5_45

Download citation

Publish with us

Policies and ethics