Skip to main content

Airway Clearance Techniques and Devices: Implications in Noninvasive Ventilation

  • Chapter
  • First Online:
Noninvasive Ventilation Outside Intensive Care Unit

Part of the book series: Noninvasive Ventilation. The Essentials ((NVE))

  • 149 Accesses

Abstract

Mucus problems in ventilated or nonventilated people potentially are causative of disease progression. Efficient management of bronchial secretions is of uppermost importance in a wide spectrum of diseases and conditions. Airway clearance techniques can be considered a complex therapeutic approach composed of careful evaluation of the patient needs, clinical condition, care setting, integrated with the best evidence. Every technique should be tailored, personalized, and proposed to the patient considering indication possible adverse effects and absolute contraindications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. González J, Carmona P, Gracia-Lavedan E, Benítez ID, Antón A, Balaña A, Díaz SB, Bernadich Ò, Córdoba A, Embid C, Espallargues M, Luján M, Martí S, Ortega Castillo MP, Tárrega J, Barbé F, Escarrabill J, CatCoVer Group. Cluster analysis of home mechanical ventilation in COPD patients: a picture of the real world and its impact on mortality. Arch Bronconeumol. 2022;58(9):642–8. https://doi.org/10.1016/j.arbres.2021.12.015; Epub 2022 Jan 12. PMID: 35312537; English, Spanish.

    Article  PubMed  Google Scholar 

  2. Fernandez Fernandez E, De Santi C, De Rose V, Greene CM. CFTR dysfunction in cystic fibrosis and chronic obstructive pulmonary disease. Expert Rev Respir Med. 2018;12(6):483–92. https://doi.org/10.1080/17476348.2018.1475235; Epub 2018 May 23. PMID: 29750581.

    Article  CAS  PubMed  Google Scholar 

  3. Rose L, McKim D, Leasa D, Nonoyama M, Tandon A, Bai YQ, Amin R, Katz S, Goldstein R, Gershon A. Trends in incidence, prevalence, and mortality of neuromuscular disease in Ontario, Canada: a population-based retrospective cohort study [2003-2014]. PLoS One. 2019;14(3):e0210574. https://doi.org/10.1371/journal.pone.0210574; PMID: 30913206; PMCID: PMC6435115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gregson E, Thomas L, Elphick HE. Pseudomonas aeruginosa infection in respiratory samples in children with neurodisability-to treat or not to treat? Eur J Pediatr. 2021;180(9):2897–905. https://doi.org/10.1007/s00431-021-04025-y; Epub 2021 Apr 6. PMID: 33822245; PMCID: PMC8346391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Proesmans M. Respiratory illness in children with disability: a severe problem? Breathe. 2016;12:e97–e103. https://doi.org/10.1183/20734735.017416.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Davis PB. Cystic fibrosis since 1938. Am J Respir Crit Care Med. 2006;173(5):475–82.

    Article  PubMed  Google Scholar 

  7. Rorhrer F. Der Strömungswiderstand in den Menschliben Atemwegen. Pflügers Arch. 1915;162:225–59; [in Rossier PH, Buhlman A, Wiesinger K. Physiologie et physiopathologie de la respiration. Ed Delachaux & Niestlé, Neuchâtel; 1962. 471 pp.

    Google Scholar 

  8. Otis AB, Mc Kerrow CB, Bartlett RA, et al. Mechanical factors in distribution of pulmonary ventilation. J Appl Physiol. 1956;8:427–43.

    Article  CAS  PubMed  Google Scholar 

  9. Lannefors L, Button BM, McIlwaine M. Physiotherapy in infants and young children with cystic fibrosis: current practice and future developments. J Royal Soc Med. 2004;97 Suppl 44(44):8–25.

    Google Scholar 

  10. King M, Phillips DM, Gross D, Vartian V, Chang HK, Zidulka A. Enhanced tracheal mucus clearance with high frequency chest wall compression. Am Rev Respir Dis. 1983;128:511–5.

    Article  CAS  PubMed  Google Scholar 

  11. Kendrick AH. Airway clearance techniques in cystic fibrosis. Eur Respir J. 2006;27(6):1082–3.

    Article  CAS  PubMed  Google Scholar 

  12. Fink JB, Mahlmeister MJ. High-frequency oscillation of the airway and chest wall. Respir Care. 2002;47:797–80.

    PubMed  Google Scholar 

  13. Holland AE, Cox NS, Houchen-Wolloff L, Rochester CL, Garvey C, ZuWallack R, Nici L, Limberg T, Lareau SC, Yawn BP, Galwicki M, Troosters T, Steiner M, Casaburi R, Clini E, Goldstein RS, Singh SJ. Defining modern pulmonary rehabilitation. An official American thoracic society workshop report. Ann Am Thorac Soc. 2021;18(5):e12–29. https://doi.org/10.1513/AnnalsATS.202102-146TH; PMID: 33929307; PMCID: PMC8086532.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nelson HP. Postural drainage of the lungs. Br Med J. 1934;2:251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lorin MI, et al. Evaluation of postural drainage by measurement of sputum volume and consistency. Am J Phys Med. 1971;50(215–9):171.

    Google Scholar 

  16. Button BM, et al. Postural drainage and gastroesophageal reflux in infants with cystic fibrosis. Arch Dis Childhood. 1997;76:148–50.

    Article  CAS  Google Scholar 

  17. Cecins NM, et al. The active cycle of breathing techniques—to tip or not to tip? Respir Med. 1999;93:660–5.

    Article  CAS  PubMed  Google Scholar 

  18. Rogers D, Doull IJM. Physiological principles of airway clearance techniques used in the physiotherapy management of cystic fibrosis. Curr Pediatr. 2005;15:233–8.

    Article  Google Scholar 

  19. Cecins NM, Jenkins SC, Pengelley J, Ryan G. The active cycle of breathing techniques—to tip or not to tip? Respir Med. 1999;93:660–5.

    Article  CAS  PubMed  Google Scholar 

  20. Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol. 1970;28:596–608.

    Article  CAS  PubMed  Google Scholar 

  21. Menkes HA, Traystman RJ. Collateral ventilation. Am Rev Respir Dis. 1977;116:287–309.

    CAS  PubMed  Google Scholar 

  22. Lewis LK, Williams MT, Old TS. The active cycle of breathing technique: a systematic review and meta-analysis. Respir Med. 2012;106(2):155.

    Article  PubMed  Google Scholar 

  23. Zisi D, Chryssanthopoulos C, Nanas S, Philippou A. The effectiveness of the active cycle of breathing technique in patients with chronic respiratory diseases: a systematic review. Heart Lung. 2022;53:89.

    Article  PubMed  Google Scholar 

  24. Boyd S, Brooks D, Agnew-Coughlin J, Ashwell J. Evaluation of the literature on the effectiveness of physical therapy modalities in the management of children with cystic fibrosis. Pediatr Phys Ther. 1994;6:70–4.

    Article  Google Scholar 

  25. Groth S, Stafanger G, Dirksen H, Andersen JB, Falk M, Kelstrup M. Positive expiratory pressure [PEP-mask] physiotherapy improves ventilation and reduces volume of trapped gas in cystic fibrosis. Bull Eur Physiopathol Respir. 1985;21(4):339–43.

    CAS  PubMed  Google Scholar 

  26. Darbee JC, Ohtake PJ, Grant BJB, Cerny FJ. Phys Ther. 2004;84(6):524–37.

    Article  PubMed  Google Scholar 

  27. West K, et al. Acapella vs. PEP mask therapy: a randomized trial in children with cystic fibrosis during respiratory exacerbation. Physiother Theory Pract. 2010;26:143–9.

    Article  PubMed  Google Scholar 

  28. Constantini D, et al. PEP mask vs. postural drainage in infants a long-term comparative trial. Pediatr Pulmonol. 2001;Suppl 22:308.

    Google Scholar 

  29. McIlwaine M, Button B, Nevitt SJ. Positive expiratory pressure physiotherapy for airway clearance in people with cystic fibrosis. Cochrane Database Syst Rev. 2019;2019(11):CD003147. https://doi.org/10.1002/14651858.CD003147.pub5.

    Article  PubMed  PubMed Central  Google Scholar 

  30. McIlwaine MP, et al. Long-term multicenter randomized controlled study of high frequency chest wall oscillation versus positive expiratory pressure mask in cystic fibrosis. Thorax. 2013;68(8):746–51.

    Article  PubMed  Google Scholar 

  31. Lee AL, Burge AT, Holland AE. Positive expiratory pressure therapy versus other airway clearance techniques for bronchiectasis. Cochrane Database Syst Rev. 2017;9(9):CD011699. https://doi.org/10.1002/14651858.CD011699.pub2.

    Article  PubMed  Google Scholar 

  32. Oberwaldner B, Evans JC, Zach MS. Forced expirations against a variable resistance: a new chest physiotherapy method in cystic fibrosis. Pediatr Pulmonol. 1986;2(6):358–67.

    Article  CAS  PubMed  Google Scholar 

  33. McIlwaine M, Button B, Nevitt SJ. Positive expiratory pressure physiotherapy for airway clearance in people with cystic fibrosis. Cochrane Database Syst Rev. 2019;2019(11):2019.

    Google Scholar 

  34. Fagevik Olsén M, Lannefors L, Westerdahl E. Positive expiratory pressure—common clinical applications and physiological effects. Respir Med. 2015;109(3):297–307; Chest Volume 90, Issue 2, 1986, Pages 218–221.

    Article  PubMed  Google Scholar 

  35. Nicolini A, Merliak F, Barlascini C. Use of positive expiratory pressure during six minute walk test: results in patients with moderate to severe chronic obstructive pulmonary disease. Multidiscip Respir Med. 2013;8(1):19. https://doi.org/10.1186/2049-6958-8-19.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Osadnik CR, McDonald CF, Miller BR, Hill CJ, Tarrant B, Steward R, Chao C, Stodden N, Oliveira CC, Gagliardi N, Holland AE. The effect of positive expiratory pressure [PEP] therapy on symptoms, quality of life and incidence of re-exacerbation in patients with acute exacerbations of chronic obstructive pulmonary disease: a multicenter, randomized controlled trial. Thorax. 2014;69(2):137–43.

    Article  PubMed  Google Scholar 

  37. Tambascio J, Tatiana L, de Souza RM, Lisboa R, de Cássia V, Passarelli HC, de Souza D, Gastaldi AC. The influence of flutter®VRP1 components on mucus transport of patients with bronchiectasis. Respir Med. 2011;105(9):1316.

    Article  PubMed  Google Scholar 

  38. Tambascio J, de Souza LT, Lisboa RM, Passarelli Rde C, de Souza HC, Gastaldi AC. The influence of flutter®VRP1 components on mucus transport of patients with bronchiectasis. Respir Med. 2011;105(9):1316–21.

    Article  PubMed  Google Scholar 

  39. Volsko TA, DiFiore J, Chatburn RL. Performance comparison of two oscillating positive expiratory pressure devices: acapella versus flutter. Respir Care. 2003;48(2):124–30.

    PubMed  Google Scholar 

  40. Morrison L, Innes S. Oscillating devices for airway clearance in people with cystic fibrosis. Cochrane Database Sys Rev. 2020;4(4):CD006842. https://doi.org/10.1002/14651858.CD006842.pub5; 2017; 5:006842.

    Article  Google Scholar 

  41. Physiotherapy for people with cystic fibrosis: from infant to adult. 2009. p 12–22.

    Google Scholar 

  42. Althaus P, Bovay F, Cao P, Escoffey AM, Ruiz N, Montulet F, et al. The bronchial hygiene assisted by the flutter VRP1 [module regulator of a positive pressure oscillation on expiration]. Eur Resp J. 1989;2(S8):693.

    Google Scholar 

  43. Tambascio J, deSouza LT, Lisboa RM, Passarelli Rde C, de Souza HC, A.C. Gastaldi the influence of flutter®VRP1 components on mucus transport of patients with bronchiectasis. Respir Med. 2011;105(9):1316–21. https://doi.org/10.1016/j.rmed.2011.04.017.

    Article  PubMed  Google Scholar 

  44. Althaus P, Bovay F, Cao P, Escoffey AM, Ruiz N, Montulet F, Chatburn RL, et al. High frequency assisted airway clearance. Respir Care. 2007;52(9):1224–35; discussion 1235–7. PMID: 17716388.

    Google Scholar 

  45. Milla CE, Hansen LG, Warwick WJ. Different frequencies should be prescribed for different high frequency chest compression machines. Biomed Instrum Technol. 2006;40(4):319–24.

    Article  PubMed  Google Scholar 

  46. Gross D, Zidulka A, O'Brien C, Wight D, Fraser R, Rosenthal L, King M. Peripheral mucociliary clearance with high-frequency chest wall compression. J Appl Physiol. 1985;58(4):1157–63. https://doi.org/10.1152/jappl.1985.58.4.1157.

    Article  CAS  PubMed  Google Scholar 

  47. Otis AB, McKerrow CB, Bartlett RA, et al. Mechanical factors in the distribution of pulmonary ventilation. J Appl Physiol. 1956;8:427–43.

    Article  CAS  PubMed  Google Scholar 

  48. Perry RJ, Man GC, Jones RL. Effects of positive end-expiratory pressure on oscillated flow rate during high-frequency chest compression. Chest. 1998;113(4):1028–33. https://doi.org/10.1378/chest.113.4.028.

    Article  CAS  PubMed  Google Scholar 

  49. https://www.cincinnatichildrens.org/health/v/minnesota-protocol.

  50. Huang WC, Wu PC, Chen CJ, Cheng YH, Shih SJ, Chen HC, Wu CL. High-frequency chest wall oscillation in prolonged mechanical ventilation patients: a randomized controlled trial. Clin Respir J. 2016;10(3):272–81.

    Article  PubMed  Google Scholar 

  51. Clinkscale D, Spihlman K, Watts P, Rosenbluth D, Kollef MH. A randomized trial of conventional chest physical therapy versus high frequency chest wall compressions in intubated and non-intubated adults. Respir Care. 2012;57(2):221–8.

    Article  PubMed  Google Scholar 

  52. Allan JS, Garrity JM, Donahue DM. High-frequency chest-wall compression during the 48 hours following thoracic surgery. Respir Care. 2009;54(3):340–3.

    PubMed  Google Scholar 

  53. Shneerson JM, Simonds AK. Noninvasive ventilation for chest wall and neuromuscular disorders. Eur Respir J. 2002;20(2):480–7.

    Article  CAS  PubMed  Google Scholar 

  54. Kang S-W, Bach JR. Maximum insufflation capacity: vital capacity and cough flows in neuromuscular disease. Am J Phys Med Rehabil. 2000;79(3):222–7.

    Article  CAS  PubMed  Google Scholar 

  55. Toussaint M, Boitano LJ, Gathot V, Steens M, Soudon P. Limits of effective cough-augmentation techniques in patients with neuromuscular disease. Respir Care. 2009;54(3):359–66.

    PubMed  Google Scholar 

  56. Bach JR, Mahajan K, Lipa B, Saporito L, Goncalves M, Komaroff E. Lung insufflation capacity in neuromuscular disease. Am J Phys Med Rehabil. 2008;87(9):720–5.

    Article  PubMed  Google Scholar 

  57. Tzeng AC, Bach JR. Prevention of pulmonary morbidity for patients with neuromuscular disease. Chest. 2000;118(5):1390–6. https://doi.org/10.1378/chest.118.5.1390.

    Article  CAS  PubMed  Google Scholar 

  58. Dohna-Schwake C, Ragette R, Teschler H, Voit T, Mellies U. IPPB-assisted coughing in neuromuscular disorders. Pediatr Pulmonol. 2006;41(6):551–7.

    Article  PubMed  Google Scholar 

  59. Goncalves MR, Honrado T, Winck JC, Paiva JA. Effects of mechanical insufflation-exsufflation in preventing respiratory failure after extubation a randomized controlled trial. Crit Care. 2012;16(2):R48. https://doi.org/10.1186/cc11249.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hull J, Aniapravan R, Chan E, Chatwin M, Forton J, Gallagher J, Gibson N, Gordon J, Hughes I, McCulloch R, Russell RR, Simonds A. British Thoracic Society guideline for respiratory management of children with neuromuscular weakness. Thorax. 2012;67(Suppl 1):i1–40.

    Article  PubMed  Google Scholar 

  61. Bianchi C, Baiardi P. Cough peak flows: standard values for children and adolescents. Am J Phys Med Rehabil. 2008;87(6):461–7.

    Article  PubMed  Google Scholar 

  62. Chatwin M, Simonds AK. Long-term mechanical insufflation-exsufflation cough assistance in neuromuscular disease: patterns of use and lessons for application. Respir Care. 2020;65(2):135–43.

    Article  PubMed  Google Scholar 

  63. Suri P, Burns S, Bach J. Pneumothorax associated with mechanical insufflation-exsufflation and related factors. Am J Phys Med Rehabil. 2008;87(11):951–5.

    Article  PubMed  Google Scholar 

  64. Bach JR. Update and perspective on noninvasive respiratory muscle aids. Part 2: the expiratory aids. Chest. 1994;105(5):1538–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buonpensiero, P. (2023). Airway Clearance Techniques and Devices: Implications in Noninvasive Ventilation. In: Esquinas, A.M., Spicuzza, L., Scala, R. (eds) Noninvasive Ventilation Outside Intensive Care Unit. Noninvasive Ventilation. The Essentials. Springer, Cham. https://doi.org/10.1007/978-3-031-37796-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37796-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37795-2

  • Online ISBN: 978-3-031-37796-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics