Skip to main content

Classification Auto-Encoder Based Detector Against Diverse Data Poisoning Attacks

  • Conference paper
  • First Online:
Data and Applications Security and Privacy XXXVII (DBSec 2023)

Abstract

Poisoning attacks are a category of adversarial machine learning threats in which an adversary attempts to subvert the outcome of the machine learning systems by injecting crafted data into training data set, thus increasing the resulting model’s test error. The adversary can tamper with the data feature space, data labels, or both, each leading to a different attack strategy with different strengths. Various detection approaches have recently emerged, each focusing on one attack strategy. The Achilles heel of many of these detection approaches is their dependence on having access to a clean, untampered data set. In this paper, we propose CAE, a Classification Auto-Encoder based detector against diverse poisoned data. CAE can detect all forms of poisoning attacks using a combination of reconstruction and classification errors without having any prior knowledge of the attack strategy. We show that an enhanced version of CAE (called CAE+) does not have to rely on a clean data set to train the defense model. The experimental results on three real datasets (MNIST, Fashion-MNIST and CIFAR-10) demonstrate that our defense model can be trained using contaminated data with up to 30% poisoned data and provides a significantly stronger defense than existing outlier detection methods. The code is available at https://github.com/Emory-AIMS/CAE

This work was funded by National Science Foundation (NSF) CNS-2124104.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016)

    Google Scholar 

  2. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Special Lecture on IE 2(1) (2015)

    Google Scholar 

  3. Aytekin, C., Ni, X., Cricri, F., Aksu, E.: Clustering and unsupervised anomaly detection with l 2 normalized deep auto-encoder representations. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE (2018)

    Google Scholar 

  4. Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 37–49 (2012)

    Google Scholar 

  5. Baracaldo, N., Chen, B., Ludwig, H., Safavi, J.A.: Mitigating poisoning attacks on machine learning models: a data provenance based approach. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 103–110 (2017)

    Google Scholar 

  6. Biggio, B., Fumera, G., Roli, F.: Security evaluation of pattern classifiers under attack. IEEE Trans. Knowl. Data Eng. 26(4), 984–996 (2013)

    Article  Google Scholar 

  7. Biggio, B., Nelson, B., Laskov, P.: Poisoning attacks against support vector machines. arXiv preprint arXiv:1206.6389 (2012)

  8. Borgnia, E., et al.: Strong data augmentation sanitizes poisoning and backdoor attacks without an accuracy tradeoff. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3855–3859. IEEE (2021)

    Google Scholar 

  9. Carnerero-Cano, J., Muñoz-González, L., Spencer, P., Lupu, E.C.: Regularisation can mitigate poisoning attacks: a novel analysis based on multiobjective bilevel optimisation. arXiv preprint arXiv:2003.00040 (2020)

  10. Chan, A., Tay, Y., Ong, Y.S., Zhang, A.: Poison attacks against text datasets with conditional adversarially regularized autoencoder. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, pp. 4175–4189 (2020)

    Google Scholar 

  11. Chen, J., Zhang, X., Zhang, R., Wang, C., Liu, L.: De-Pois: an attack-agnostic defense against data poisoning attacks. IEEE Trans. Inf. Forensics Security 16, 3412–3425 (2021)

    Article  Google Scholar 

  12. Estellés-Arolas, E., González-Ladrón-de Guevara, F.: Towards an integrated crowdsourcing definition. J. Inf. Sci. 38(2), 189–200 (2012)

    Article  Google Scholar 

  13. Fang, M., Sun, M., Li, Q., Gong, N.Z., Tian, J., Liu, J.: Data poisoning attacks and defenses to crowdsourcing systems. In: Proceedings of the Web Conference 2021, pp. 969–980 (2021)

    Google Scholar 

  14. Feng, J., Cai, Q.Z., Zhou, Z.H.: Learning to confuse: generating training time adversarial data with auto-encoder. Adv. Neural. Inf. Process. Syst. 32, 11994–12004 (2019)

    Google Scholar 

  15. Geng, J., Fan, J., Wang, H., Ma, X., Li, B., Chen, F.: High-resolution SAR image classification via deep convolutional autoencoders. IEEE Geosci. Remote Sens. Lett. 12(11), 2351–2355 (2015)

    Article  Google Scholar 

  16. Gu, T., Liu, K., Dolan-Gavitt, B., Garg, S.: Badnets: evaluating backdooring attacks on deep neural networks. IEEE Access 7, 47230–47244 (2019)

    Article  Google Scholar 

  17. Hong, S., Chandrasekaran, V., Kaya, Y., DumitraÅŸ, T., Papernot, N.: On the effectiveness of mitigating data poisoning attacks with gradient shaping. arXiv preprint arXiv:2002.11497 (2020)

  18. Jagielski, M., Oprea, A., Biggio, B., Liu, C., Nita-Rotaru, C., Li, B.: Manipulating machine learning: poisoning attacks and countermeasures for regression learning. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 19–35. IEEE (2018)

    Google Scholar 

  19. Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1885–1894. JMLR. org (2017)

    Google Scholar 

  20. Koh, P.W., Steinhardt, J., Liang, P.: Stronger data poisoning attacks break data sanitization defenses. Mach. Learn., 1–47 (2022)

    Google Scholar 

  21. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  22. Laishram, R., Phoha, V.V.: Curie: a method for protecting SVM classifier from poisoning attack. arXiv preprint arXiv:1606.01584 (2016)

  23. LeCun, Y., Haffner, P., Bottou, L., Bengio, Y.: Object recognition with gradient-based learning. In: Shape, Contour and Grouping in Computer Vision. LNCS, vol. 1681, pp. 319–345. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46805-6_19

    Chapter  Google Scholar 

  24. Madani, P., Vlajic, N.: Robustness of deep autoencoder in intrusion detection under adversarial contamination. In: Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security, pp. 1–8 (2018)

    Google Scholar 

  25. Melis, M., Demontis, A., Pintor, M., Sotgiu, A., Biggio, B.: SECML: a python library for secure and explainable machine learning (2019). arXiv preprint arXiv:1912.10013

  26. Meng, D., Chen, H.: Magnet: a two-pronged defense against adversarial examples. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 135–147 (2017)

    Google Scholar 

  27. Muñoz-González, L., et al.: Towards poisoning of deep learning algorithms with back-gradient optimization. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 27–38 (2017)

    Google Scholar 

  28. Nelson, B., et al.: Exploiting machine learning to subvert your spam filter. LEET 8, 1–9 (2008)

    Google Scholar 

  29. Paudice, A., Muñoz-González, L., Gyorgy, A., Lupu, E.C.: Detection of adversarial training examples in poisoning attacks through anomaly detection. arXiv preprint arXiv:1802.03041 (2018)

  30. Paudice, A., Muñoz-González, L., Lupu, E.C.: Label sanitization against label flipping poisoning attacks. In: Alzate, C., et al. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11329, pp. 5–15. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13453-2_1

    Chapter  Google Scholar 

  31. Sakurada, M., Yairi, T.: Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, pp. 4–11 (2014)

    Google Scholar 

  32. Shejwalkar, V., Houmansadr, A.: Manipulating the byzantine: optimizing model poisoning attacks and defenses for federated learning. In: NDSS (2021)

    Google Scholar 

  33. Shejwalkar, V., Houmansadr, A., Kairouz, P., Ramage, D.: Back to the drawing board: a critical evaluation of poisoning attacks on production federated learning. In: IEEE Symposium on Security and Privacy (2022)

    Google Scholar 

  34. Shen, S., Tople, S., Saxena, P.: Auror: defending against poisoning attacks in collaborative deep learning systems. In: Proceedings of the 32nd Annual Conference on Computer Security Applications, pp. 508–519 (2016)

    Google Scholar 

  35. Steinhardt, J., Koh, P.W.W., Liang, P.S.: Certified defenses for data poisoning attacks. In: Advances in Neural Information Processing Systems, pp. 3517–3529 (2017)

    Google Scholar 

  36. Sun, J., Li, A., DiValentin, L., Hassanzadeh, A., Chen, Y., Li, H.: FL-WBC: enhancing robustness against model poisoning attacks in federated learning from a client perspective. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  37. Tahmasebian, F., Xiong, L., Sotoodeh, M., Sunderam, V.: Crowdsourcing under data poisoning attacks: a comparative study. In: Singhal, A., Vaidya, J. (eds.) DBSec 2020. LNCS, vol. 12122, pp. 310–332. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49669-2_18

    Chapter  Google Scholar 

  38. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(Dec), 3371–3408 (2010)

    Google Scholar 

  39. Wang, Z., Ma, J., Wang, X., Hu, J., Qin, Z., Ren, K.: Threats to training: a survey of poisoning attacks and defenses on machine learning systems. ACM Comput. Surv. 55(7), 1–36 (2022)

    Article  Google Scholar 

  40. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  41. Xiao, H., Xiao, H., Eckert, C.: Adversarial label flips attack on support vector machines. In: ECAI, pp. 870–875 (2012)

    Google Scholar 

  42. Xiao, H., Biggio, B., Brown, G., Fumera, G., Eckert, C., Roli, F.: Is feature selection secure against training data poisoning? In: International Conference on Machine Learning, pp. 1689–1698 (2015)

    Google Scholar 

  43. Xiao, H., Biggio, B., Nelson, B., Xiao, H., Eckert, C., Roli, F.: Support vector machines under adversarial label contamination. Neurocomputing 160, 53–62 (2015)

    Article  Google Scholar 

  44. Xing, C., Ma, L., Yang, X.: Stacked denoise autoencoder based feature extraction and classification for hyperspectral images. J. Sens. 2016 (2016)

    Google Scholar 

  45. Yang, C., Wu, Q., Li, H., Chen, Y.: Generative poisoning attack method against neural networks. arXiv preprint arXiv:1703.01340 (2017)

  46. Zhao, M., An, B., Gao, W., Zhang, T.: Efficient label contamination attacks against black-box learning models. In: IJCAI, pp. 3945–3951 (2017)

    Google Scholar 

  47. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 665–674 (2017)

    Google Scholar 

  48. Zhu, T., Li, G., Zhou, W., Yu, P.S.: Differential Privacy and Applications. AIS, vol. 69. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62004-6

    Book  Google Scholar 

  49. Zong, B., et al.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Xiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Razmi, F., Xiong, L. (2023). Classification Auto-Encoder Based Detector Against Diverse Data Poisoning Attacks. In: Atluri, V., Ferrara, A.L. (eds) Data and Applications Security and Privacy XXXVII. DBSec 2023. Lecture Notes in Computer Science, vol 13942. Springer, Cham. https://doi.org/10.1007/978-3-031-37586-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37586-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37585-9

  • Online ISBN: 978-3-031-37586-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics