Skip to main content

Mechanisms and Responses to Enhancing Pollutants Stress Tolerance in Crop Plants

  • Chapter
  • First Online:
Climate-Resilient Agriculture, Vol 2
  • 354 Accesses

Abstract

Plants are very robust and tolerant group of organisms in the nature. They face all environmental changes in static conditions by evolving and developing morpho-anatomical structures and physio-biochemical mechanisms. Various man-made substances acting as pollutants have entered into the environment and causing pollution have posed danger and risk to the ecosystem health and badly affected all organisms including the crop plants. The nature of pollutants is solid (paper, tin, heavy metals, toxic metals, metalloids, plastics); liquid (oil spills, pesticides, detergents); gases (CO, CH4, NOx, SO2, SF6, CFC and PFC); and radiations (ozone, X-rays, UV-radiation, radioactive radiation). These pollutants are present in various concentrations and amounts and have different impacts on crop plants. The effects are visible ultimately as decline in production and productivity of crops. Plants have evolved diverse mechanisms in responses to pollutants to counteract the pollution stress. It can be seen as bioaccumulation, biomass partitioning, detoxification, modification, phytochelation, biotransformation, exclusion, increased hormone, and metabolites synthesis. Some of these mechanisms are general in nature, while others are species-specific, depending upon the type and nature of the pollution stress that shows various responses in relation with nature and type of pollutants and interaction with plant. These responses are visible at morphological, anatomical, physiological, biochemical, and molecular levels. These responses are an outcome of tolerance capacity of the plant. The pollutant and plant interaction further give rise to clues to help plant to evolve against the pollutant. The diverse and ever-rising threat of pollutant has made human being conscious to regulate, control, and protect the ecosystem. It has pushed to invent and use novel tools and techniques that help to overcome or clean up the environment. These innovative techniques are nanotechnology, bioremediation, use of unmanned aerial vehicle, and modern biotechnological tools. They help to develop tolerant crops by either classical or modern biotechnology tools to meet the rising need of human population across globe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahammed GJ, Yang Y (2022) Anthocyanin-mediated arsenic tolerance in plants. Environ Pollut 292(Pt B):118475. https://doi.org/10.1016/j.envpol.2021.118475

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Yasin NA, Khan WU, Akram W, Wang R, Shah AA, Akbar M, Ali A, Wu T (2021a) Silicon assisted ameliorative effects of iron nanoparticles against cadmium stress: attaining new equilibrium among physiochemical parameters, antioxidative machinery, and osmoregulators of Phaseolus lunatus. Plant Physiol Biochem 166:874–886

    CAS  PubMed  Google Scholar 

  • Ahmad P, Alyemeni MN, Wijaya L, Ahanger MA, Ashraf M, Alam P, Paray BA, Rinklebe J (2021b) Nitric oxide donor, sodium nitroprusside, mitigates mercury toxicity in different cultivars of soybean. J Hazard Mater 408:124852. https://doi.org/10.1016/j.jhazmat.2020.124852

    Article  CAS  PubMed  Google Scholar 

  • Alsafran M, Usman K, Ahmed B, Rizwan M, Saleem MH, Al Jabri H (2022) Understanding the phytoremediation mechanisms of potentially toxic elements: a proteomic overview of recent advances. Front Plant Sci 13:881242. https://doi.org/10.3389/fpls.2022.881242

    Article  PubMed  PubMed Central  Google Scholar 

  • Anani OA, Abel I, Olomukoro JO, Onyeachu IB (2022) Insights to proteomics and metabolomics metal chelation in food crops. J Proteins Proteom 2022:1–15

    Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Deckert J, Rucinska-Sobkowiak R, Gzyl J, Pawlak-Sprada S, Abramowski D, Jelonek T, Gwozdz EA (2012) Nitric oxide implication in cadmium-induced programmed cell death in roots and signaling response of yellow lupine plants. Plant Physiol Biochem 58:124–134

    CAS  PubMed  Google Scholar 

  • Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll A (2013) ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front Plant Sci 4:63. https://doi.org/10.3389/fpls.2013.00063

    Article  PubMed  PubMed Central  Google Scholar 

  • Astier J, Lindermayr C (2012) Nitric oxide-dependent posttranslational modification in plants: an update. Int J Mol Sci 13(11):15193–15208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee A, & Shelver WL (2021) Micro- and nanoplastic induced cellular toxicity in mammals: A review. Sci Total Environ 755(Pt 2), 142518. https://doi.org/10.1016/j.scitotenv.2020.142518

  • Bansal R, Priya S, Dikshit HK, Jacob SR, Rao M, Bana RS, Kumari J, Tripathi K, Kumar A, Kumar S, H M Siddique K (2021) Growth and antioxidant responses in iron-biofortified lentil under cadmium stress. Toxics 9(8):182. https://doi.org/10.3390/toxics9080182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartucca ML, Cerri M, Del Buono D, Forni C (2022) Use of biostimulants as a new approach for the improvement of phytoremediation performance-a review. Plants (Basel) 11(15). https://doi.org/10.3390/plants11151946

  • Bashir S, Jan N, Wani UM, Raja V, John R (2022) Co-over expression of Ascorbate Glutathione pathway enzymes improve mercury tolerance in tomato. Plant Physiol Biochem 186:170–181

    CAS  PubMed  Google Scholar 

  • Bera K, Dutta P, Sadhukhan S (2022) Seed priming with non-ionizing physical agents: plant responses and underlying physiological mechanisms. Plant Cell Rep 41(1):53–73

    CAS  PubMed  Google Scholar 

  • Bharathi SD, Dilshani A, Rishivanthi S, Khaitan P, Vamsidhar A, Jacob S (2022) Resource recycling, recovery, and xenobiotic remediation from e-wastes through biofilm technology: a review. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-022-04055-8

  • Bücker-Neto L, Paiva A, Machado RD, Arenhart RA, Margis-Pinheiro M (2017) Interactions between plant hormones and heavy metals responses. Genet Mol Biol 40(1 suppl 1):373–386

    PubMed  PubMed Central  Google Scholar 

  • Cai X, Jiang M, Liao J, Yang Y, Li N, Cheng Q, Li X, Song H, Luo Z, Liu S (2021) Biomass allocation strategies and Pb-enrichment characteristics of six dwarf bamboos under soil Pb stress. Ecotoxicol Environ Saf 207:111500. https://doi.org/10.1016/j.ecoenv.2020.111500

    Article  CAS  PubMed  Google Scholar 

  • Calatayud A, Barreno E (2001) Chlorophyll a fluorescence, antioxidant enzymes and lipid peroxidation in tomato in response to ozone and benomyl. Environ Pollut 115(2):283–289

    CAS  PubMed  Google Scholar 

  • Chakrabarti M, Mukherjee A (2021) Investigating the underlying mechanism of cadmium-induced plant adaptive response to genotoxic stress. Ecotoxicol Environ Saf 209:111817. https://doi.org/10.1016/j.ecoenv.2020.111817

    Article  CAS  PubMed  Google Scholar 

  • Chang HF, Wang SL, Lee DC, Hsiao SS, Hashimoto Y, Yeh KC (2020a) Assessment of indium toxicity to the model plant Arabidopsis. J Hazard Mater 387:121983. https://doi.org/10.1016/j.jhazmat.2019.121983

    Article  CAS  PubMed  Google Scholar 

  • Chang HF, Yang PT, Lin HW, Yeh KC, Chen MN, Wang SL (2020b) Indium uptake and accumulation by rice and wheat and health risk associated with their consumption. Environ Sci Technol 54(23):14946–14954

    CAS  PubMed  Google Scholar 

  • Cheah BH, Liao PC, Lo JC, Wang YT, Tang IC, Yeh KC, Lee DY, Lin YF (2022) Insight into the mechanism of indium toxicity in rice. J Hazard Mater 429:128265. https://doi.org/10.1016/j.jhazmat.2022.128265

    Article  CAS  PubMed  Google Scholar 

  • Cholewińska P, Moniuszko H, Wojnarowski K, Pokorny P, Szeligowska N, Dobicki W, Polechoński R, Górniak W (2022) The occurrence of microplastics and the formation of biofilms by pathogenic and opportunistic bacteria as threats in aquaculture. Int J Environ Res Public Health 19(13). https://doi.org/10.3390/ijerph19138137

  • Corpas FJ, Barroso JB (2013) Nitro-oxidative stress vs oxidative or nitrosative stress in higher plants. New Phytol 199(3):633–635

    CAS  PubMed  Google Scholar 

  • Crawford NM (2006) Mechanisms for nitric oxide synthesis in plants. J Exp Bot 57(3):471–478

    CAS  PubMed  Google Scholar 

  • Cruz Y, Villar S, Gutiérrez K, Montoya-Ruiz C, Gallego JL, Delgado MDP, Saldarriaga JF (2021) Gene expression and morphological responses of Lolium perenne L. exposed to cadmium (Cd(2+)) and mercury (Hg(2+)). Sci Rep 11(1):11257. https://doi.org/10.1038/s41598-021-90826-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delerue F, Scattolin M, Atteia O, Cohen GJV, Franceschi M, Mench M (2022) Biomass partitioning of plants under soil pollution stress. Commun Biol 5(1):365. https://doi.org/10.1038/s42003-022-03307-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Démares, F., Gibert, L., Creusot, P., Lapeyre, B., & Proffit, M. (2022). Acute ozone exposure impairs detection of floral odor, learning, and memory of honey bees, through olfactory generalization. The Science of the total environment, 827, 154342. https://doi.org/10.1016/j.scitotenv.2022.154342

  • Farré-Armengol, G., Filella, I., Llusia, J., & Peñuelas, J. (2016). Bidirectional Interaction between Phyllospheric Microbiotas and Plant Volatile Emissions. Trends in plant science, 21(10), 854–860. https://doi.org/10.1016/j.tplants.2016.06.005

    Google Scholar 

  • Fan QJ, Liu JH (2012) Nitric oxide is involved in dehydration/drought tolerance in Poncirus trifoliata seedlings through regulation of antioxidant systems and stomatal response. Plant Cell Rep 31(1):145–154

    CAS  PubMed  Google Scholar 

  • Forti V, Baldé CP, Kuehr R, Bel G. The Global E-waste Monitor 2020: Quantities, flows and the circular economy potential. United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR)–co-hosted SCYCLE Programme, International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Rotterdam

    Google Scholar 

  • Gaur S, Kumar J, Prasad SM, Sharma S, Bhat JA, Sahi S, Singh VP, Tripathi DK, Chauhan DK (2021) Silicon and nitric oxide interplay alleviates copper induced toxicity in mung bean seedlings. Plant Physiol Biochem 167:713–722

    CAS  PubMed  Google Scholar 

  • Ge J, Tao J, Zhao J, Wu Z, Zhang H, Gao Y, Tian S, Xie R, Xu S, Lu L (2022) Transcriptome analysis reveals candidate genes involved in multiple heavy metal tolerance in hyperaccumulator Sedum alfredii. Ecotoxicol Environ Saf 241:113795. https://doi.org/10.1016/j.ecoenv.2022.113795

    Article  CAS  PubMed  Google Scholar 

  • Gou Z, Liu G, Wang Y, Li X, Wang H, Chen S, Su Y, Sun Y, Ma NL, Chen G (2022) Enhancing N uptake and reducing N pollution via green, sustainable N fixation-release model. Environ Res 214(Pt 4):113934. https://doi.org/10.1016/j.envres.2022.113934

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Hu C, Jia X, Ren Y, Su D, He J (2022) Physiological and biochemical bases of spermidine-induced alleviation of cadmium and lead combined stress in rice. Plant Physiol Biochem 189:104–114

    CAS  PubMed  Google Scholar 

  • Guo FQ, Okamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science 302(5642):100–103

    CAS  PubMed  Google Scholar 

  • Gupta KJ, Kaiser WM (2010) Production and scavenging of nitric oxide by barley root mitochondria. Plant Cell Physiol 51(4):576–584

    CAS  PubMed  Google Scholar 

  • Han B, Yang Z, Xie Y, Nie L, Cui J, Shen W (2014) Arabidopsis HY1 confers cadmium tolerance by decreasing nitric oxide production and improving iron homeostasis. Mol Plant 7(2):388–403. https://doi.org/10.1093/mp/sst122

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9(8):681. https://doi.org/10.3390/antiox9080681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauschild MZ (1993) Putrescine (1,4-diaminobutane) as an indicator of pollution-induced stress in higher plants: barley and rape stressed with Cr(III) or Cr(VI). Ecotoxicol Environ Saf 26(2):228–247

    CAS  PubMed  Google Scholar 

  • Hejna M, Kapuścińska D, Aksmann A (2022) Pharmaceuticals in the aquatic environment: a review on eco-toxicology and the remediation potential of algae. Int J Environ Res Public Health 19(13). https://doi.org/10.3390/ijerph19137717

  • Hlihor RM, Roșca M, Hagiu-Zaleschi L, Simion IM, Daraban GM, Stoleru V (2022) Medicinal plant growth in heavy metals contaminated soils: responses to metal stress and induced risks to human health. Toxics 10(9). https://doi.org/10.3390/toxics10090499

  • Hoque MN, Tahjib-Ul-Arif M, Hannan A, Sultana N, Akhter S, Hasanuzzaman M, Akter F, Hossain MS, Sayed MA, Hasan MT, Skalicky M, Li X, Brestič M (2021) Melatonin modulates plant tolerance to heavy metal stress: morphological responses to molecular mechanisms. Int J Mol Sci 22(21):11445. https://doi.org/10.3390/ijms222111445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou D, O’Connor D, Igalavithana AD, Alessi DS, Luo J, Tsang DCW, Sparks DL, Yamauchi Y, Rinklebe J, Ok YS (2020) Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat Rev Earth Environ 1:366–381

    Google Scholar 

  • Hu H, Kaizu Y, Huang J, Furuhashi K, Zhang H, Li M, Imou K (2022) Research on methods decreasing pesticide waste based on plant protection unmanned aerial vehicles: a review. Front Plant Sci 13:811256. https://doi.org/10.3389/fpls.2022.811256

    Article  PubMed  PubMed Central  Google Scholar 

  • Imran, M., Khan, A. L., Mun, B. G., Bilal, S., Shaffique, S., Kwon, E. H., Kang, S. M., Yun, B. W., & Lee, I. J. (2022). Melatonin and nitric oxide: Dual players inhibiting hazardous metal toxicity in soybean plants via molecular and antioxidant signaling cascades. Chemosphere, 308(Pt 3), 136575. https://doi.org/10.1016/j.chemosphere.2022.136575

  • Jensen H, Gaw S, Lehto NJ, Hassall L, Robinson BH (2018) The mobility and plant uptake of gallium and indium, two emerging contaminants associated with electronic waste and other sources. Chemosphere 209:675–684

    CAS  PubMed  Google Scholar 

  • Jin J, Song Z, Zhao B, Zhang Y, Wang R (2022) Physiological and metabolomics responses of Hydrangea macrophylla (Thunb.) Ser. and Hydrangea strigosa Rehd. to lead exposure. Ecotoxicol Environ Saf 243:113960. https://doi.org/10.1016/j.ecoenv.2022.113960

    Article  CAS  PubMed  Google Scholar 

  • Karalija E, Selović A, Bešta-Gajević R, Šamec D (2022) Thinking for the future: Phytoextraction of cadmium using primed plants for sustainable soil clean-up. Physiol Plant 174(4):e13739. https://doi.org/10.1111/ppl.13739

    Article  CAS  PubMed  Google Scholar 

  • Kopittke PM, McKenna BA, Blamey FPC, Wehr JB, Menzies NW (2009) Metal-induced cell rupture in elongating roots is associated with metal ion binding strengths. Plant Soil 322:303–315

    CAS  Google Scholar 

  • Kosakivska IV, Vedenicheva NP, Babenko LM, Voytenko LV, Romanenko KO, Vasyuk VA (2022) Exogenous phytohormones in the regulation of growth and development of cereals under abiotic stresses. Mol Biol Rep 49(1):617–628

    CAS  PubMed  Google Scholar 

  • Kumar, S., Shah, S. H., Vimala, Y., Jatav, H. S., Ahmad, P., Chen, Y., & Siddique, K. H. M. (2022). Abscisic acid: Metabolism, transport, crosstalk with other plant growth regulators, and its role in heavy metal stress mitigation. Frontiers in plant science, 13, 972856. https://doi.org/10.3389/fpls.2022.972856

  • Li X, Yang D, Yang Y, Jin G, Yin X, Zheng Y, Xu J, Yang Y (2022) Quantitative succinyl-proteome profiling of turnip (Brassica rapa var. rapa) in response to cadmium stress. Cell 11(12). https://doi.org/10.3390/cells11121947

  • Liang D, Lu X, Zhuang M, Shi G, Hu C, Wang S, Hao J (2021) China’s greenhouse gas emissions for cropping systems from 1978-2016. Sci Data 8(1):171. https://doi.org/10.1038/s41597-021-00960-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin A, Wang Y, Tang J, Xue P, Li C, Liu L, Hu B, Yang F, Loake GJ, Chu C (2012) Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol 158(1):451–464

    CAS  PubMed  Google Scholar 

  • Liu S, Liu X, Shi Y, Zhuang S, Chen Q (2022) The adaptive mechanism of halophilic Brachybacterium muris in response to salt stress and its mitigation of copper toxicity in hydroponic plants. Environ Pollut:120124. https://doi.org/10.1016/j.envpol.2022.120124

  • López MD, Toro MT, Riveros G, Illanes M, Noriega F, Schoebitz M, García-Viguera C, Moreno DA (2022) Brassica sprouts exposed to microplastics: effects on phytochemical constituents. Sci Total Environ 823:153796. https://doi.org/10.1016/j.scitotenv.2022.153796

    Article  CAS  PubMed  Google Scholar 

  • López-Bucio JS, Ravelo-Ortega G, López-Bucio J (2022) Chromium in plant growth and development: toxicity, tolerance and hormesis. Environ Pollut 312:120084. https://doi.org/10.1016/j.envpol.2022.120084

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Chhikara S, Xing B, Musante C, Clarkson JC, Dhankher OP (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1(7):768–778

    CAS  Google Scholar 

  • Ma Y, Wang Y, Shi XJ, Chen XP, Li ZL (2022) Mechanism and application of plant growth-promoting bacteria in heavy metal bioremediation. Huan Jing Ke Xue 43(9):4911–4922

    PubMed  Google Scholar 

  • Manzi HP, Abou-Shanab RAI, Jeon BH, Wang J, Salama ES (2022) Algae: a frontline photosynthetic organism in the microplastic catastrophe. Trends Plant Sci 27(11):1159–1172. https://doi.org/10.1016/j.tplants.2022.06.005

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Tan H, Wang M, Jiang T, Wei H, Xu W, Jiang Q, Bao H, Ding Y, Wang F, Zhu C (2022) Research progress of soil microorganisms in response to heavy metals in rice. J Agric Food Chem 70(28):8513–8522

    CAS  PubMed  Google Scholar 

  • Maurya AK, Sinha D (2020) Nitric oxide as a savior molecule against stress induced by chromium and cadmium. Int J Plant Environ Sci 6(04):253–263

    Google Scholar 

  • Mengel A, Chaki M, Shekariesfahlan A, Lindermayr C (2013) Effect of nitric oxide on gene transcription–S-nitrosylation of nuclear proteins. Front Plant Sci 4:293. https://doi.org/10.3389/fpls.2013.00293

    Article  PubMed  PubMed Central  Google Scholar 

  • Menhas S, Yang X, Hayat K, Ali A, Ali EF, Shahid M, Shaheen SM, Rinklebe J, Hayat S, Zhou P (2022) Melatonin enhanced oilseed rape growth and mitigated Cd stress risk: a novel trial for reducing Cd accumulation by bioenergy crops. Environ Pollut 308:119642. https://doi.org/10.1016/j.envpol.2022.119642

    Article  CAS  PubMed  Google Scholar 

  • Mir AR, Pichtel J, Hayat S (2021) Copper: uptake, toxicity and tolerance in plants and management of cu-contaminated soil. Biometals 34(4):737–759

    CAS  PubMed  Google Scholar 

  • Mishra D, Kumar S, Mishra BN (2021) An overview of morpho-physiological, biochemical, and molecular responses of sorghum towards heavy metal stress. Rev Environ Contam Toxicol 256:155–177

    CAS  PubMed  Google Scholar 

  • Molina L, Segura A (2021) Biochemical and metabolic plant responses toward polycyclic aromatic hydrocarbons and heavy metals present in atmospheric pollution. Plan Theory 10(11). https://doi.org/10.3390/plants10112305

  • Montes CM, Demler HJ, Li S, Martin DG, Ainsworth EA (2022) Approaches to investigate crop responses to ozone pollution: from O(3)-FACE to satellite-enabled modeling. Plant J 109(2):432–446

    CAS  PubMed  Google Scholar 

  • Niazi NK, Hussain MM, Bibi I, Natasha, Shahid M, Ali F, Iqbal J, Shaheen SM, Abdelrahman H, Akhtar W, Wang H, Rinklebe J (2022) The significance of eighteen rice genotypes on arsenic accumulation, physiological response and potential health risk. Sci Total Environ 832:155004. https://doi.org/10.1016/j.scitotenv.2022.155004.

  • Noor I, Sohail H, Sun J, Nawaz MA, Li G, Hasanuzzaman M, Liu J (2022) Heavy metal and metalloid toxicity in horticultural plants: tolerance mechanism and remediation strategies. Chemosphere 303:135196. https://doi.org/10.1016/j.chemosphere.2022.135196

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Villasante C, Rellán-Álvarez R, Del Campo FF, Carpena-Ruiz RO, Hernández LE (2005) Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot 56:2239–2251

    CAS  PubMed  Google Scholar 

  • Peng WX, Yue X, Chen H, Ma NL, Quan Z, Yu Q, Wei Z, Guan R, Lam SS, Rinklebe J, Zhang D, Zhang B, Bolan N, Kirkham MB, Sonne C (2022) A review of plants formaldehyde metabolism: implications for hazardous emissions and phytoremediation. J Hazard Mater 436:129304. https://doi.org/10.1016/j.jhazmat.2022.129304

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Chaca MV, Rodriguez-Serrano M, Molina AS, Pedranzani HE, Zirulnik F, Sandalio LM, Romero-Puertas MC (2014) Cadmium induces two waves of reactive oxygen species in Glycine max (L.) roots. Plant Cell Environ 37:1672–1687

    PubMed  Google Scholar 

  • Prakash, V., Singh, V. P., Tripathi, D. K., Sharma, S., & Corpas, F. J. (2019). Crosstalk between nitric oxide (NO) and abscisic acid (ABA) signalling molecules in higher plants. Environmental and Experimental Botany, 161, 41–49. https://doi.org/10.1016/j.envexpbot.2018.10.033

  • Rodriguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gomez M, Del Rio LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544

    CAS  PubMed  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, Del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    CAS  PubMed  Google Scholar 

  • Seyyednejad SM, Niknejad M, Yusefi M (2015) The effect of air pollution on some morphological and biochemical factors of Callistemon citrinus in petrochemical zone in south of Iran. Asian J Plant Sci 8:562–565

    Google Scholar 

  • Shabbaj II, AbdElgawad H, Balkhyour MA, Tammar A, Madany MMY (2022) Elevated CO2 differentially mitigated oxidative stress induced by indium oxide nanoparticles in young and old leaves of C3 and C4 crops. Antioxidants 11(2):308. https://doi.org/10.3390/antiox11020308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang B, Fu R, Agathokleous E, Dai L, Zhang G, Wu R, Feng Z (2022) Ethylenediurea offers moderate protection against ozone-induced rice yield loss under high ozone pollution. Sci Total Environ 806:151341. https://doi.org/10.1016/j.scitotenv.2021.151341

    Article  CAS  PubMed  Google Scholar 

  • Shrestha RK, Shi D, Obaid H, Elsayed NS, Xie D, Ni J, Ni C (2022) Crops’ response to the emergent air pollutants. Planta 256(4):80. https://doi.org/10.1007/s00425-022-03993-1

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Alamri S, Mukherjee S, Al-Amri AA, Alsubaie QD, Al-Munqedhi B, Ali HM, Kalaji HM, Fahad S, Rajput VD, Narayan OP (2021) Molybdenum and hydrogen sulfide synergistically mitigate arsenic toxicity by modulating defense system, nitrogen and cysteine assimilation in faba bean (Vicia faba L.) seedlings. Environ Pollut 290:117953. https://doi.org/10.1016/j.envpol.2021.117953

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Indoliya Y, Chauhan AS, Singh SP, Singh AP, Dwivedi S, Tripathi RD, Chakrabarty D (2017) Nitric oxide mediated transcriptional modulation enhances plant adaptive responses to arsenic stress. Sci Rep 7:3592. https://doi.org/10.1038/s41598-017-03923-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh D, Sharma NL, Singh CK, Sarkar SK, Singh I, Dotaniya ML (2020) Effect of chromium (VI) toxicity on morpho-physiological characteristics, yield, and yield components of two chickpea (Cicer arietinum L.) varieties. PLoS One 15(12):e0243032. https://doi.org/10.1371/journal.pone.0243032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh D, Singh CK, Singh D, Sarkar SK, Prasad SK, Sharma NL, Singh I (2022) Glycine betaine modulates chromium (VI)-induced morpho-physiological and biochemical responses to mitigate chromium toxicity in chickpea (Cicer arietinum L.) cultivars. Sci Rep 12(1):8005. https://doi.org/10.1038/s41598-022-11869-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobkowiak R, Deckert J (2003) Cadmium-induced changes in growth and cell cycle gene expression in suspension-culture cells of soybean. Plant Physiol Biochem 41:767–772

    CAS  Google Scholar 

  • Soja G, Soja AM (1995) Ozone effects on dry matter partitioning and chlorophyll fluorescence during plant development of wheat. Water Air Soil Pollut 85:1461–1466. https://doi.org/10.1007/BF00477187

    Article  CAS  Google Scholar 

  • Sonawane H, Shelke D, Chambhare M, Dixit N, Math S, Sen S, Borah SN, Islam NF, Joshi SJ, Yousaf B, Rinklebe J, Sarma H (2022) Fungi-derived agriculturally important nanoparticles and their application in crop stress management - prospects and environmental risks. Environ Res 212:113543. https://doi.org/10.1016/j.envres.2022.113543

    Article  CAS  PubMed  Google Scholar 

  • Syu CH, Chen LY, Lee DY (2021) The growth and uptake of gallium (Ga) and indium (in) of wheat seedlings in Ga- and In-contaminated soils. Sci Total Environ 759:143943. https://doi.org/10.1016/j.scitotenv.2020.143943

    Article  CAS  PubMed  Google Scholar 

  • Tamaoki M, Matsuyama T, Nakajima N, Aono M, Kubo A, Saji H (2004) A method for diagnosis of plant environmental stresses by gene expression profiling using a cDNA microarray. Environ Pollut 131(1):137–145. https://doi.org/10.1016/j.envpol.2004.01.008

    Article  CAS  PubMed  Google Scholar 

  • Tan X, He J, Nie Y, Ni X, Ye Q, Ma L, Megharaj M, He W, Shen W (2023) Climate and edaphic factors drive soil enzyme activity dynamics and tolerance to cd toxicity after rewetting of dry soil. Sci Total Environ 855:158926. https://doi.org/10.1016/j.scitotenv.2022.158926

    Article  CAS  PubMed  Google Scholar 

  • Tian F, Han C, Chen X, Wu X, Mi J, Wan X, Liu Q, He F, Chen L, Yang H, Zhong Y, Qian Z, Zhang F (2022) PscCYP716A1-mediated brassinolide biosynthesis increases cadmium tolerance and enrichment in poplar. Front Plant Sci 13:919682. https://doi.org/10.3389/fpls.2022.919682

    Article  PubMed  PubMed Central  Google Scholar 

  • Ünyayar S, Çelik A, Çekiç FO, Gözel A (2006) Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba. Mutagenesis 21:77–81

    PubMed  Google Scholar 

  • USGS (2020) Mineral commodity summaries 2020 U.S. Government Publishing Office; Telecommunication Union (ITU) & International Solid Waste Association (ISWA),the circular economy potential. United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR) – co-hosted SCYCLE Programme, International UK

    Google Scholar 

  • Verma S, Dubey R (2001) Effect of Cadmium on soluble sugars and enzymes of their metabolism in rice. Biol Plant 44:117–123. https://doi.org/10.1023/A:1017938809311

    Article  CAS  Google Scholar 

  • Wang YH, Li XC, Zhu-Ge Q, Jiang X, Wang WD, Fang WP, Chen X, Li XH (2012) Nitric oxide participates in cold-inhibited Camellia sinensis pollen germination and tube growth partly via cGMP in vitro. PLoS One 7(12):e52436. https://doi.org/10.1371/journal.pone.0052436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Loake GJ, Chu C (2013) Cross-talk of nitric oxide and reactive oxygen species in plant programmed cell death. Front Plant Sci 4:314. https://doi.org/10.3389/fpls.2013.00314

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang C, Cheng K, Ren C, Liu H, Sun J, Reis S, Yin S, Xu J, Gu B (2021a) An empirical model to estimate ammonia emission from cropland fertilization in China. Environ Pollut 288:117982. https://doi.org/10.1016/j.envpol.2021.117982

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Fang L, Beiyuan J, Cui Y, Peng Q, Zhu S, Wang M, Zhang X (2021b) Improvement of alfalfa resistance against Cd stress through rhizobia and arbuscular mycorrhiza fungi co-inoculation in Cd-contaminated soil. Environ Pollut 277:116758. https://doi.org/10.1016/j.envpol.2021.116758

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Narayanan M, Shi X, Chen X, Li Z, Natarajan D, Ma Y (2022a) Plant growth-promoting bacteria in metal-contaminated soil: current perspectives on remediation mechanisms. Front Microbiol 13:966226. https://doi.org/10.3389/fmicb.2022.966226

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wild O, Ashworth K, Chen X, Wu Q, Qi Y, Wang Z (2022b) Reductions in crop yields across China from elevated ozone. Environ Pollut 292:118218. https://doi.org/10.1016/j.envpol.2021.118218

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yao Z, Zheng X, Subramaniam L, Butterbach-Bahl K (2022c) A synthesis of nitric oxide emissions across global fertilized croplands from crop-specific emission factors. Glob Chang Biol 28(14):4395–4408

    PubMed  Google Scholar 

  • White SJO, Shine JP (2016) Exposure potential and health impacts of indium and gallium, metals critical to emerging electronics and energy technologies. Curr Environ Health Rep 3(4):459–467

    CAS  PubMed  Google Scholar 

  • Wiszniewska A (2021) Priming strategies for benefiting plant performance under toxic trace metal exposure. Plan Theory 10(4). https://doi.org/10.3389/fpls.2022.919682

  • Xiong FS, Day TA (2001) Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants. Plant Physiol 125(2):738–751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav BS, Mani A (2019) Analysis of bHLH coding genes of Cicer arietinum during heavy metal stress using biological network. Physiol Mol Biol Plants 25:113–121

    CAS  PubMed  Google Scholar 

  • Yan LJ, Allen DC (2021) Cadmium-induced kidney injury: oxidative damage as a unifying mechanism. Biomol Ther 11(11). https://doi.org/10.3390/biom11111575

  • Yang D, Hu C, Wang X, Shi G, Li Y, Fei Y, Song Y, Zhao X (2021a) Microbes: a potential tool for selenium biofortification. Metallomics 13(10). https://doi.org/10.1093/mtomcs/mfab054

  • Yang GL, Zheng MM, Tan AJ, Liu YT, Feng D, Lv SM (2021b) Research on the mechanisms of plant enrichment and detoxification of cadmium. Biology 10(6). https://doi.org/10.3390/biology10060544

  • Yang Y, Huang J, Sun Q, Wang J, Huang L, Fu S, Qin S, Xie X, Ge S, Li X, Cheng Z, Wang X, Chen H, Zheng B, He Y (2022a) microRNAs: key players in plant response to metal toxicity. Int J Mol Sci 23(15):8642. https://doi.org/10.3390/ijms23158642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Yang F, Liu JL, Wu HT, Yang H, Shi Y, Liu J, Zhang YF, Luo YR, Chen KM (2022b) Heavy metal transporters: functional mechanisms, regulation, and application in phytoremediation. Sci Total Environ 809:151099. https://doi.org/10.1016/j.scitotenv.2021.151099

    Article  CAS  PubMed  Google Scholar 

  • Yildiztugay E, Ozfidan-Konakci C, Arikan B, Alp FN, Elbasan F, Zengin G, Cavusoglu H, Sakalak H (2022) The hormetic dose-risks of polymethyl methacrylate nanoplastics on chlorophyll a fluorescence transient, lipid composition and antioxidant system in Lactuca sativa. Environ Pollut 308:119651. https://doi.org/10.1016/j.envpol.2022.119651

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Wen X, Huang D, Du C, Deng R, Zhou Z, Tao J, Li R, Zhou W, Wang Z, Chen H (2021) Interactions between microplastics/nanoplastics and vascular plants. Environ Pollut 290:117999. https://doi.org/10.1016/j.envpol.2021.117999

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Zhuo R, Lu Z, Li S, Chen J, Wang Y, Li J, Han X (2022) Molecular insights into lignin biosynthesis on cadmium tolerance: morphology, transcriptome and proteome profiling in Salix matsudana. J Hazard Mater 441:129909. https://doi.org/10.1016/j.jhazmat.2022.129909

    Article  CAS  PubMed  Google Scholar 

  • Żabka A, Winnicki K, Polit JT, Wróblewski M, Maszewski J (2021) Cadmium (ii)-induced oxidative stress results in replication stress and epigenetic modifications in root meristem cell nuclei of Vicia faba. Cell 10(3):640. https://doi.org/10.3390/cells10030640

    Article  CAS  Google Scholar 

  • Zakari S, Jiang X, Zhu X, Liu W, Allakonon MGB, Singh AK, Chen C, Zou X, Akponikpè PBI, Dossa GGO, Yang B (2021) Influence of sulfur amendments on heavy metals phytoextraction from agricultural contaminated soils: a meta-analysis. Environ Pollut 288:117820. https://doi.org/10.1016/j.envpol.2021.117820

    Article  CAS  PubMed  Google Scholar 

  • Zandalinas SI, Fritschi FB, Mittler R (2021) Global warming, climate change, and environmental pollution: recipe for a multifactorial stress combination disaster. Trends Plant Sci 26(6):588–599

    CAS  PubMed  Google Scholar 

  • Zdunek-Zastocka E, Grabowska A, Michniewska B, Orzechowski S (2021) Proline concentration and its metabolism are regulated in a leaf age dependent manner but not by abscisic acid in pea plants exposed to cadmium stress. Cell 10(4):946. https://doi.org/10.3390/cells10040946

    Article  CAS  Google Scholar 

  • Zhang, Y., Cai, C., Gu, Y., Shi, Y., & Gao, X. (2022a). Microplastics in plant-soil ecosystems: A meta-analysis. Environmental pollution (Barking, Essex : 1987), 308, 119718. https://doi.org/10.1016/j.envpol.2022.119718

  • Zhang Y, Zhao S, Liu S, Peng J, Zhang H, Zhao Q, Zheng L, Chen Y, Shen Z, Xu X, Chen C (2022b) Enhancing the phytoremediation of heavy metals by combining hyperaccumulator and heavy metal-resistant plant growth-promoting bacteria. Front Plant Sci 13:912350. https://doi.org/10.3389/fpls.2022.912350

  • Zhang S, Yi K, Chen A, Shao J, Peng L, Luo S (2022c) Toxicity of zero-valent iron nanoparticles to soil organisms and the associated defense mechanisms: a review. Ecotoxicology 31(6):873–883

    Google Scholar 

  • Zhao H, Qian R, Liang X, Ou Y, Sun C, Lin X (2022a) Indium induces nitro-oxidative stress in roots of wheat (Triticum aestivum). J Hazard Mater 428:128260. https://doi.org/10.1016/j.jhazmat.2022.128260

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Yang Y, Zhang L, Zhang J, Zhou Y, Huang H, Luo S, Luo L (2022b) Silicon-based additive on heavy metal remediation in soils: toxicological effects, remediation techniques, and perspectives. Environ Res 205:112244. https://doi.org/10.1016/j.envres.2021.112244

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Teng M, Zhang J, Wang K, Zhang J, Xu Y, Wang C (2022c) Insights into the mechanisms of organic pollutant toxicity to earthworms: advances and perspectives. Environ Pollut 303:119120. https://doi.org/10.1016/j.envpol.2022.119120

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Li Z (2022) Recent advances in minimizing cadmium accumulation in wheat. Toxics 10(4):187. https://doi.org/10.3390/toxics10040187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Lutts S, Han R (2021) Kosteletzkya pentacarpos: a potential halophyte candidate for phytoremediation in the meta(loid)s polluted saline soils. Plan Theory 10(11). https://doi.org/10.3390/plants10112495

  • Zhu SC, Zheng HX, Liu WS, Liu C, Guo MN, Huot H, Morel JL, Qiu RL, Chao Y, Tang YT (2022) Plant-soil feedbacks for the restoration of degraded mine lands: a review. Front Microbiol 12:751794. https://doi.org/10.3389/fmicb.2021.751794

    Article  PubMed  PubMed Central  Google Scholar 

  • Zulfiqar U, Jiang W, Xiukang W, Hussain S, Ahmad M, Maqsood MF, Ali N, Ishfaq M, Kaleem M, Haider FU, Farooq N, Naveed M, Kucerik J, Brtnicky M, Mustafa A (2022) Cadmium phytotoxicity, tolerance, and advanced remediation approaches in agricultural soils; a comprehensive review. Front Plant Sci 13:773815. https://doi.org/10.3389/fpls.2022.773815

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Maurya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maurya, A.K. (2023). Mechanisms and Responses to Enhancing Pollutants Stress Tolerance in Crop Plants. In: Hasanuzzaman, M. (eds) Climate-Resilient Agriculture, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-031-37428-9_23

Download citation

Publish with us

Policies and ethics