Skip to main content

Sliding-Mode-Based Fault Diagnosis and Fault-Tolerant Control for Quad-Rotors

  • Chapter
  • First Online:
Sliding-Mode Control and Variable-Structure Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 490))

  • 363 Accesses

Abstract

This chapter presents the design of a sliding-mode-based fault diagnosis and a fault-tolerant control for the trajectory tracking problem in quad-rotors. The problem considers external disturbances, and two different actuator faulty scenarios: multiple losses of rotor effectiveness or a complete rotor failure. The proposals are only based on measurable positions and angles. For the fault diagnosis strategy, a finite-time sliding-mode observer is proposed to estimate some state variables, and it provides a set of residuals. These residuals allow us the detection, isolation, and identification of multiple actuator faults even under the presence of a class of external disturbances. Using the proposed fault diagnosis, an actuator fault accommodation controller is developed to solve the trajectory tracking problem in quad-rotors under the effects of multiple losses of rotor effectiveness and external disturbances. The fault accommodation partially compensates the actuator faults allowing the usage of a baseline robust-nominal controller that deals with external disturbances. Additionally, in order to deal with the rotor failure scenario, an active fault-tolerant control is proposed. First, the rotor failure is isolated using the proposed fault diagnosis, and then, a combination of a finite-time sliding-mode observer, PID controllers, and continuous high-order sliding-modes controllers is proposed. Such a strategy allows the yaw angular velocity to remain bounded and the position tracking to be achieved even in the presence of some external disturbances. Numerical simulations and experimental results on Quanser’s QBall2 show the performance of the proposed strategies.

This chapter contains material reprinted from Romeo Falcón, Héctor Ríos, and Alejandro Dzul, A sliding-mode-based active fault-tolerant control for robust trajectory tracking in quad-rotors under a rotor failure, International Journal of Robust and Nonlinear Control. Copyright ©1999–2023 John Wiley & Sons, Inc. All rights reserved. Section 3 and Figs. 1, 2, 3, 4, 5, 6, 7, and 8 ©2022 IEEE. Reprinted with permission, from, R. Falcón, H. Ríos and A. Dzul, “A Robust Fault Diagnosis for Quad-Rotors: A Sliding-Mode Observer Approach,” in IEEE/ASME Transactions on Mechatronics, vol. 27, no. 6, pp. 4487–4496, Dec. 2022, DOI:10.1109/TMECH.2022.3156854. Section 4.1 ©2021 IEEE. Reprinted with permission, from, R. Falcón, H. Ríos and A. Dzul, “An Actuator Fault Accommodation Sliding-Mode Control Approach for Trajectory Tracking in Quad-Rotors,” 2021 60th IEEE Conference on Decision and Control (CDC), Austin, TX, USA, 2021, pp. 7100–7105, DOI:10.1109/CDC45484.2021.9682845.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Palunko, I., Cruz, P., Fierro, R.: Agile load transportation. IEEE Robot. Autom. Mag. 19(3), 69–79 (2012)

    Article  Google Scholar 

  2. Ríos, H., Falcón, R., González, O.A., Dzul, A.: Continuous sliding-modes control strategies for quad-rotor robust tracking: real-time application. IEEE Trans. Ind. Electron. 66, 1264–1272 (2019)

    Article  Google Scholar 

  3. Falcón, R., Ríos, H., Mera, M., Dzul, A.: Attractive ellipsoid-based robust control for quadrotor tracking. IEEE Trans. Ind. Electron. 67(9), 7851–7860 (2020)

    Article  Google Scholar 

  4. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault Tolerant Control. Springer, New York (2003)

    Book  MATH  Google Scholar 

  5. Dydek, Z.T., Annaswamy, A.M., Lavretsky, E.: Adaptive control of quadrotor UAVs: a design trade study with flight evaluations. IEEE Trans. Control Syst. Technol. 21(4), 1400–1406 (2013)

    Article  Google Scholar 

  6. Merheb, A.R., Noura, H., Bateman, F.: Design of passive fault-tolerant controllers of a quadrotor based on sliding mode theory. Int. J. Appl. Math. Comput. Sci. 25(3), 561–576 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Xiao, B., Hu, Q., Zhang, Y.: Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation. IEEE Trans. Control Syst. Technol. 20(6), 1063–6536 (2012)

    Article  Google Scholar 

  8. Wang, B., Zhang, Y.: An adaptive fault-tolerant sliding mode control allocation scheme for multirotor helicopter subject to simultaneous actuator faults. IEEE Trans. Ind. Electron. 65(5), 4227–4236 (2018)

    Article  Google Scholar 

  9. Song, Y., He, L., Zhang, D., Qian, J., Fu, J.: Neuroadaptive fault-tolerant control of quadrotor UAVs: a more affordable solution. IEEE Trans. Neural Netw. Learn. Syst. 30(7), 1975–1983 (2019)

    Article  MathSciNet  Google Scholar 

  10. Tang, P., Lin, D., Zheng, D., Fan, S., Ye, J.: Observer based finite-time fault tolerant quadrotor attitude control with actuator faults. Aerosp. Sci. Technol. 105968 (2020)

    Google Scholar 

  11. Nian, X., Chen, W., Chu, X., Xu, Z.: Robust adaptive fault estimation and fault tolerant control for quadrotor attitude systems. Int. J. Control 93(3), 725–737 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, B., Shen, Y., Zhang, Y.: Active fault-tolerant control for a quadrotor helicopter against actuator faults and model uncertainties. Aerosp. Sci. Technol. 99, 105745 (2020)

    Article  Google Scholar 

  13. Avram, R.C., Zhang, X., Muse, J.: Quadrotor actuator fault diagnosis and accommodation using nonlinear adaptive estimators. IEEE Trans. Control Syst. Technol. 25(6), 2219–2226 (2017)

    Article  Google Scholar 

  14. Lyu, P., Liu, S., Lai, J., Liu, J.: An analytical fault diagnosis method for yaw estimation of quadrotors. Control Eng. Pract. 86, 118–128 (2019)

    Article  Google Scholar 

  15. Chang, J., Cieslak, J., Dávila, J., Zhou, J., Zolghadri, A., Guo, Z.: A two-step approach for an enhanced quadrotor attitude estimation via IMU data. IEEE Trans. Control Syst. Technol. 26(3), 1140–1148 (2018)

    Article  Google Scholar 

  16. Aguilar-Sierra, H., Flores, G., Salazar, S., Lozano, R.: Fault estimation for a quad-rotor MAV using a polynomial observer. J. Intell. Robot. Syst. 73, 455–468 (2013)

    Article  Google Scholar 

  17. Freddi, A., Longhi, S., Monteriù, A.: A diagnostic Thau observer for a class of unmanned vehicles. J. Intell. Robot. Syst. 67(1), 61–73 (2012)

    Article  MATH  Google Scholar 

  18. Han, W., Wang, Z., Shen, Y.: Fault estimation for a quadrotor unmanned aerial vehicle by integrating the parity space approach with recursive least squares. Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng. 232(4), 783–796 (2018)

    Article  Google Scholar 

  19. Amoozgar, M.H., Chamseddine, A., Zhang, Y.: Experimental test of a two-stage Kalman filter for actuator fault detection and diagnosis of an unmanned quadrotor helicopter. J. Intell. Robot. Syst. 70(1–4), 107–117 (2013)

    Article  Google Scholar 

  20. Zhong, Y., Zhang, Y., Zhang, W., Zuo, J., Zhan, H.: Robust actuator fault detection and diagnosis for a quadrotor UAV with external disturbances. IEEE Access 6, 48169–48180 (2018)

    Article  Google Scholar 

  21. Cen, Z., Noura, H., Susilo, T.B., Al Younes, Y.: Robust fault diagnosis for quadrotor UAVs using adaptive Thau observer. J. Intell. Robot. Syst. 73(1–4), 573–588 (2014)

    Article  Google Scholar 

  22. Chen, F., Jiang, R., Zhang, K., Jiang, B., Tao, G.: Robust backstepping sliding-mode control and observer-based fault estimation for a quadrotor UAV. IEEE Trans. Ind. Electron. 63(8), 5044–5056 (2016)

    Google Scholar 

  23. Chandra, K.P.B., Alwi, H., Edwards, C.: Fault reconstruction for a quadrotor using an LPV sliding mode observer. IFAC-PapersOnLine 48(21), 374–379 (2015)

    Article  Google Scholar 

  24. Capello, E., Punta, E., Fridman, L.: Strategies for control, fault detection and isolation via sliding mode techniques for a 3-DOF helicopter. In: The 55th Conference on Decision and Control, pp. 6464–6469 (2016)

    Google Scholar 

  25. Liu, J., Jiang, B., Zhang, Y.: Sliding mode observer-based fault detection and isolation in flight control systems. In: The IEEE International Conference on Control Applications, pp. 1049–1054 (2007)

    Google Scholar 

  26. Wang, X., Sun, S., van Kampen, E.-J., Chu, Q.: Quadrotor fault tolerant incremental sliding mode control driven by sliding mode disturbance observers. Aerosp. Sci. Technol. 87, 417–430 (2019)

    Article  Google Scholar 

  27. Merheb, A.-R., Noura, H., Bateman, F.: Emergency control of AR drone quadrotor UAV suffering a total loss of one rotor. IEEE/ASME Trans. Mechatron. 22(2), 961–971 (2017)

    Article  Google Scholar 

  28. Lippiello, V., Ruggiero, F., Serra, D.: Emergency landing for a quadrotor in case of a propeller failure: a backstepping approach. In: The 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4782–4788 (2014)

    Google Scholar 

  29. Mueller, M.W., D’Andrea, R.: Stability and control of a quadrocopter despite the complete loss of one, two, or three propellers. In: The 2014 IEEE International Conference on Robotics and Automation, pp. 45–52 (2014)

    Google Scholar 

  30. Lanzon, A., Freddi, A., Longhi, S.: Flight control of a quadrotor vehicle subsequent to a rotor failure. J. Guid. Control Dyn. 37, 580–591 (2014)

    Article  Google Scholar 

  31. Sun, S., Sijbers, L., Wang, X., De Visser, C.: High-speed flight of quadrotor despite loss of single rotor. IEEE Robot. Autom. Lett. 3, 3201–3207 (2018)

    Google Scholar 

  32. Hou, Z., Lu, P., Tu, Z.: Nonsingular terminal sliding mode control for a quadrotor UAV with a total rotor failure. Aerosp. Sci. Technol. 98(105716), 1–18 (2020)

    Google Scholar 

  33. Falcón, R., Ríos, H., Dzul, A.: Comparative analysis of continuous sliding-modes control strategies for quad-rotor robust tracking. Control Eng. Pract. 90, 241–256 (2019)

    Article  Google Scholar 

  34. García-Carrillo, L.R., Dzul-López, A.E., Lozano, R., Pégard, C.: Quad rotorcraft control. In: Advances in Industrial Control. Springer, London, Heidelberg, New York, Dordrecht (2013)

    Google Scholar 

  35. Khan, W., Nahon, M.: A propeller model for general forward flight conditions. Int. J. Intell. Unmanned Syst. 3(2/3), 72–92 (2015)

    Article  Google Scholar 

  36. Levant, A.: High-order sliding modes: differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)

    Article  MATH  Google Scholar 

  37. Falcón, R., Ríos, H., Dzul, A.: A robust fault diagnosis for quad-rotors: a sliding-mode observer approach. IEEE/ASME Trans. Mechatron. 27(6), 4487–4496 (2022)

    Article  Google Scholar 

  38. Quanser Consulting Inc.: Quanser QBall2, User Manual. http://www.quanser.com, pp. 1–41 (2014)

  39. Falcón, R., Ríos, H., Dzul, A.: An actuator fault accommodation sliding-mode control approach for trajectory tracking in quad-rotors. In: 2021 60th IEEE Conference on Decision and Control (CDC), Austin, TX, USA, pp. 7100–7105 (2021)

    Google Scholar 

  40. Mercado-Uribe, Á., Moreno, J.A.: Discontinuous integral action for arbitrary relative degree in sliding-mode control. Automatica 118, 109018 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Cruz-Zavala, E., Moreno, J.A.: Higher order sliding mode control using discontinuous integral action. IEEE Trans. Autom. Control 65(10), 4316–4323 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Torres-González, V., Sanchez, T., Fridman, L.M., Moreno, J.A.: Design of continuous twisting algorithm. Automatica 80, 119–126 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Falcón, R., Ríos, H., Dzul, A.: A sliding-mode-based active fault-tolerant control for robust trajectory tracking in quad-rotors under a rotor failure. Int. J. Robust Nonlinear Control 32(15), 8451–8469 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the SEP-CONACYT-ANUIES-ECOS NORD Project 315597. The authors gratefully acknowledge the financial support from TecNM projects, CONAHCYT CVU 270504 project 922 and CONAHCYT CVU 785635.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor Ríos .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Proof of Theorem 2

The attitude-tracking error dynamics is given as

$$\begin{aligned} \dot{e}_\eta &=\varepsilon _{\eta },\\ \dot{\varepsilon }_{\eta }&=J\left( \tau -I_\eta Mf(t)\right) +\Xi w_{\eta }(\eta _{2})-\Lambda _\eta \eta _{2}+d_{\eta }(t)-\ddot{\eta }_d. \end{aligned}$$

Let us prove that the tracking error dynamics for the roll angle \(\phi \) is UFTS when the controller (18b) is applied. Then, the closed-loop tracking error dynamics for \(\phi \) is given as

$$\begin{aligned} \dot{e}_\phi &=\varepsilon _{\phi },\end{aligned}$$
(36a)
$$\begin{aligned} \dot{\varepsilon }_{\phi }&=\bar{\nu }_\phi -k_{\phi 1}\lceil e_{\phi }\rfloor ^{\frac{1}{3}}-k_{\phi 2}\lceil \varepsilon _{\phi }\rfloor ^{\frac{1}{2}},\end{aligned}$$
(36b)
$$\begin{aligned} \dot{\bar{\nu }}_\phi &=-k_{\phi 3}\lceil e_{\phi }\rfloor ^{0}-k_{\phi 4}\lceil \varepsilon _{\phi }\rfloor ^{0}+\bar{\Delta }_\phi (t), \end{aligned}$$
(36c)

where \(\bar{\nu }_\phi =\nu _\phi -J_x^{-1}L(\tilde{f}_3(t)-\tilde{f}_4(t))+d_\phi (t)\) and \(\bar{\Delta }_\phi (t)=-J_x^{-1}L(\dot{\tilde{f}}_3(t)-\dot{\tilde{f}}_4(t))+\dot{d}_\phi (t)\). It is given that \(\dot{\tilde{f}}(t)=M^{-1}\zeta ^{-1}(\eta _{1})\dot{d}(t)+M^{-1}\dot{\zeta }^{-1}(\eta _{1})d(t)\), and thus

$$\begin{aligned} \dot{\tilde{f}}_1(t)&=\frac{m}{4c\phi c\theta }\dot{d}_z(t)+\frac{J_z}{4K_\tau }\dot{d}_\psi (t)+\frac{J_y}{2L}\dot{d}_\theta (t)+\rho (t),\\ \dot{\tilde{f}}_2(t)&=\frac{m}{4c\phi c\theta }\dot{d}_z(t)+\frac{J_z}{4K_\tau }\dot{d}_\psi (t)-\frac{J_y}{2L}\dot{d}_\theta (t)+\rho (t),\\ \dot{\tilde{f}}_3(t)&=\frac{m}{4c\phi c\theta }\dot{d}_z(t)-\frac{J_z}{4K_\tau }\dot{d}_\psi (t)+\frac{J_x}{2L}\dot{d}_\phi (t)+\rho (t),\\ \dot{\tilde{f}}_4(t)&=\frac{m}{4c\phi c\theta }\dot{d}_z(t)-\frac{J_z}{4K_\tau }\dot{d}_\psi (t)-\frac{J_x}{2L}\dot{d}_\phi (t)+\rho (t), \end{aligned}$$

where \(\rho (t)=m(\dot{\theta }c\phi s\theta +\dot{\phi }s\phi c\theta )d_z(t)/4c^2\phi c^2\theta \). Then, based on the previous equalities, it follows that \(\dot{\tilde{f}}_3(t)-\dot{\tilde{f}}_4(t)=J_xL^{-1}\dot{d}_\phi (t)\), and hence, (36c) can be rewritten as \(\dot{\bar{\nu }}_\phi =-k_{\phi 3}\lceil e_{\phi }\rfloor ^{0}-k_{\phi 4}\lceil \varepsilon _{\phi }\rfloor ^{0}\). Hence, if the gains are selected as \(k_{\phi 1}=25\varpi ^{\frac{2}{3}}\), \(k_{\phi 2}=15\varpi ^{\frac{1}{2}}\), \(k_{\phi 3}=2.3\varpi \) and \(k_{\phi 4}=1.1\varpi \) with any \(\varpi >0\), the finite-time convergence to zero is ensured for the tracking error dynamics (36) [42]. The same procedure can be followed to prove the finite-time convergence to zero for the tracking error dynamics of pitch and yaw angles, i.e., \((e_\eta ;\varepsilon _{\eta }) = 0\) is UFTS.

The position tracking error dynamics, taking into account the virtual control (18a), is given as

$$\begin{aligned} \dot{\epsilon }_\xi =A_k\epsilon _\xi +B\left[ d_\xi (t)-\frac{g_\xi (\eta _{1})}{m}\sum _{i=1}^{4}\tilde{f}_i(t)+w_\xi (\eta _{1},u_z,\nu ) \right] , \end{aligned}$$
(37)
$$\begin{aligned} A=\begin{pmatrix} 0_{6\times 3}&{}I_6\\ 0_3&{}0_{3\times 6} \end{pmatrix},\qquad B=\begin{pmatrix} 0_{6\times 3}\\ I_3 \end{pmatrix}, \end{aligned}$$

where \(A_k:=A+BK_\xi \in \mathbb {R}^{9\times 9}\), \(\epsilon _\xi :=(\bar{e}_\xi ^T,e_\xi ^T,\varepsilon _{\xi }^T)\in \mathbb {R}^{9}\) and \(K_\xi =({\textbf {1}}K_{i\xi },{\textbf {1}}K_{p\xi },\) \({\textbf {1}}K_{d\xi })\in \mathbb {R}^{1\times 9}\), with \({\textbf {1}}:=(1,1,1)\in \mathbb {R}^{1\times 3}\). The nonlinear decoupling term \(w_{\xi }=u_mg_{\xi }(\eta _{1})-G-\nu \) is Lipschitz in \(\eta _{1}\) and continuous in \(u_m\), then it follows that \(||w_\xi ||_\infty \le L_\eta ||e_\eta ||_\infty \), for all \(\eta _{1}\), \(\nu \in \mathbb {R}^3\) and \(u_m\in \mathbb {R}\), for some positive \(L_\eta >0\). This implies that \(w_\xi \) vanishes when \(e_\eta =0\). Hence, the closed-loop tracking error dynamics (37), considering \(w_\xi \equiv 0\), can be rewritten as

$$\begin{aligned} \dot{\epsilon }_\xi =A_k\epsilon _\xi +B\left[ d_\xi (t)-\frac{g_\xi (\eta _{1})}{m}\sum _{i=1}^{4}\tilde{f}_i(t) \right] . \end{aligned}$$
(38)

Let us propose a candidate Lyapunov function \(V:\in \mathbb {R}^9\rightarrow \mathbb {R}\) as \(V(\epsilon _\xi )=\epsilon _\xi ^TP\epsilon _\xi \), with \(P = P^T > 0\). The time derivative of V, along the trajectories of the system (38), satisfies

$$\begin{aligned} \dot{V}(\epsilon _\xi )=\epsilon _\xi ^T(PA_k+A_k^TP)\epsilon _\xi +2\epsilon _\xi ^TPB\left[ d_\xi (t)-\frac{g_\xi (\eta _{1})}{m}\sum _{i=1}^{4}\tilde{f}_i(t) \right] . \end{aligned}$$

Since the pair (AB) is controllable, there always exists \(K_\xi \) such that \(A_k\) is Hurwitz; and thus, it holds that \(PA_k+A_k^TP=-Q\), with \(Q = Q^T > 0\). Then, the time derivative of V is upper bounded as

$$\begin{aligned} \dot{V}(\epsilon _\xi )&\le -(1-\mu )\lambda _\text {min}\{Q\}||\epsilon _\xi ||^2,\\ \forall ||\epsilon _\xi ||&\ge \frac{2\lambda _\text {max}\{P\}}{\mu \lambda _\text {min}\{Q\}}\left( ||d_\xi ||_\infty +\frac{1}{m}\sum _{i=1}^{4}||\tilde{f}_i||_\infty \right) , \end{aligned}$$

for any \(\mu \in (0,1)\). Then, it is proved that the position tracking error dynamics is ISS with respect to \(d_\xi \) and \(\tilde{f}\).\(\Box \)

1.2 Proof of Lemma 3

The convergence to zero of the attitude tracking error dynamics, when the Continuous Twisting Control is active (Algorithm 3—lines 2, 5, 9, and 12), is given in [2]. Then, only the convergence to zero of the attitude tracking error dynamics, when the positive (Algorithm 3—lines 6 and 11) and negative controllers (Algorithm 3—lines 3 and 8) are active, will be proven.

Let us assume that the first rotor has failed. Then, according to Algorithm 3—line 3, the angular moment \(\tau _{\theta }\) must be negative, and thus, it is designed as

$$\begin{aligned} \tau _{\theta } & =\frac{J_{y}}{2}(\bar{\tau }_{\theta }+f_{\theta }(\eta _{2},\hat{\eta }_{\theta },\ddot{\theta }_{\star })-|\bar{\tau }_{\theta }+f_{\theta }(\eta _{2},\hat{\eta }_{\theta },\ddot{\theta }_{\star })|), \end{aligned}$$
(39)

where \(f_{\theta }(\eta _{2},\hat{\eta }_{\theta },\ddot{\theta }_{\star })=-b_{\theta }\dot{\phi }\dot{\psi }+\frac{a_{\theta }}{J_{y}}\dot{\theta }-\hat{\eta }_{\theta }+\ddot{\theta }_{\star }\). Note that if \(\bar{\tau }_{\theta }+f_{\theta }(\eta _{2},\hat{\eta }_{\theta },\ddot{\theta }_{\star })\le 0\), the angular moment \(\tau _{\theta }\) given in (39) is rewritten as \(\tau _{\theta }=J_{y}(\bar{\tau }_{\theta }+f_{\theta }(\eta _{2},\hat{\eta }_{\theta },\ddot{\theta }_{\star }))\), where the Continuous Twisting Control is active, just as in Algorithm 3—lines 9 and 12. On the other hand, if \(\bar{\tau }_{\theta }+f_{\theta }(\eta _{2},\hat{\eta }_{\theta },\ddot{\theta }_{\star })>0\), the control signal (39) is given by \(\tau _{\theta }=0\), where the control effort is null, in order to avoid negative thrusts.

The closed-loop tracking error dynamics for \(\theta \), taking into account (39), is written as

$$\begin{aligned} \dot{e}_{\theta } & =\varepsilon _{\theta },\\ \dot{\varepsilon }_{\theta } & =\frac{\bar{\tau }_{\theta }+f_{\theta }(\eta _{2},\hat{\eta }_{\theta },\ddot{\theta }_{\star })-|\bar{\tau }_{\theta }+f_{\theta }(\eta _{2},\hat{\eta }_{\theta },\ddot{\theta }_{\star })|}{2}-f_{\theta }(\eta _{2},\hat{\eta }_{\theta },\ddot{\theta }_{\star }). \end{aligned}$$

Such a dynamics can be viewed as a state-dependent switched system where the switching surface is given by \(\mathscr {S}:=\{(\bar{\tau }_{\theta },\eta _{2},\hat{\eta }_{\theta },\ddot{\theta }_{\star })\in \mathbb {R}\times \mathbb {R}^{2}\times \mathbb {R}:\bar{\tau }_{\theta }+f_{\theta }(\eta _{2},\hat{\eta }_{\theta },\ddot{\theta }_{\star })=0\}\), i.e.,

$$\begin{aligned} \dot{e}_{\theta } & =\varepsilon _{\theta },\end{aligned}$$
(40a)
$$\begin{aligned} \dot{\varepsilon }_{\theta } & =g_{\sigma (t)}(\bar{\tau }_{\theta },\eta _{2},\hat{\eta }_{\theta },\ddot{\theta }_{\star }),\end{aligned}$$
(40b)
$$\begin{aligned} \sigma (t) & ={\left\{ \begin{array}{ll} 1, &{} \text {if}\ f_{\theta }(\eta _{2},\hat{\eta }_{\theta },\ddot{\theta }_{\star })\le -\bar{\tau }_{\theta },\\ 2, &{} \text {if}\ f_{\theta }(\eta _{2},\hat{\eta }_{\theta },\ddot{\theta }_{\star })>-\bar{\tau }_{\theta }, \end{array}\right. } \end{aligned}$$
(40c)

where \(g_{1}(\bar{\tau }_{\theta },\eta _{2},\hat{\eta }_{\theta },\ddot{\theta }_{\star })=\bar{\tau }_{\theta }\) and \(g_{2}(\bar{\tau }_{\theta },\eta _{2},\hat{\eta }_{\theta },\ddot{\theta }_{\star })=b_{\theta }\dot{\phi }\dot{\psi }-\frac{a_{\theta }}{J_{y}}\dot{\theta }+\hat{\eta }_{\theta }-\ddot{\theta }_{\star }\). In order to provide the convergence properties of the tracking error dynamics (40), the analysis is carried out for each operating mode, i.e., for each \(\sigma =1,2\).

(1) Case \(\mathbf {\sigma =1}\): In this case it holds that \(f_{\theta }(\eta _{2},\hat{\eta }_{\theta },\ddot{\theta }_{\star })\le -\bar{\tau }_{\theta }\), implying that \(g_{1}(\bar{\tau }_{\theta },\eta _{2},\hat{\eta }_{\theta },\ddot{\theta }_{\star })=\bar{\tau }_{\theta }\), and the tracking error dynamics (40) is rewritten as

$$\begin{aligned} \dot{e}_{\theta } & =\varepsilon _{\theta },\end{aligned}$$
(41a)
$$\begin{aligned} \dot{\varepsilon }_{\theta } & =v_{\theta }-k_{\theta 0}\left\lceil e_{\theta }\right\rfloor ^{\frac{1}{3}}-k_{\theta 1}\left\lceil \varepsilon _{\theta }\right\rfloor ^{\frac{1}{2}}, \end{aligned}$$
(41b)
$$\begin{aligned} \dot{v}_{\theta } & =-k_{\theta 2}\left\lceil e_{\theta }\right\rfloor ^{0}-k_{\theta 3}\left\lceil \varepsilon _{\theta }\right\rfloor ^{0}. \end{aligned}$$
(41c)

Then, at steady state (\(e_{\theta },\varepsilon _{\theta },v_{\theta })=0\), according to [42], system (41) is UFTS. Thus, it follows that \(\bar{\tau }_{\theta }(t)=v_{\theta }-k_{\theta 0}\left\lceil e_{\theta }\right\rfloor ^{\frac{1}{3}}-k_{\theta 1}\left\lceil \varepsilon _{\theta }\right\rfloor ^{\frac{1}{2}}=0\), for all \(t\ge T_{\theta }\); and hence, the switching condition turns into \(f_{\theta }(\eta _{2},\hat{\eta }_{\theta },\ddot{\theta }_{\star })\le 0\), implying that (39) is rewritten as

$$\begin{aligned} \tau _{\theta } & =J_{y}f_{\theta }(\eta _{2},\hat{\eta }_{\theta },\ddot{\theta }_{\star })=J_{y}(-b_{\theta }\dot{\phi }\dot{\psi }+\frac{a_{\theta }}{J_{y}}\dot{\theta }-\hat{\eta }_{\theta }+\ddot{\theta }_{\star }). \end{aligned}$$
(42)

Since \(f_{\theta }(\eta _{2},\hat{\eta }_{\theta },\ddot{\theta }_{\star })\le 0\), then the control law (42) is negative. Recalling that \(\hat{\eta }_{\theta }(t)=d_{\theta }(t)\), for all \(t\ge T\) with \(T<t_{f1}\), if \(\hat{\eta }_{\theta }(t)=d_{\theta }(t)\ge \frac{a_{\theta }}{J_{y}}\dot{\theta }(t)-b_{\theta }\dot{\phi }(t)\dot{\psi }(t)+\ddot{\theta }_{\star }(t)\), holds for all \(t\ge t_{f1}\), i.e., the constraint (30a), then \(f_{\theta }(\eta _{2}(t),\hat{\eta }_{\theta }(t),\ddot{\theta }_{\star }(t))\le 0\), for all \(t\ge t_{f1}\); and hence, system (41) never switches to the case \(\sigma =2\) and (\(e_{\theta },\varepsilon _{\theta },v_{\theta })=0\) is UFTS.

(2) Case \(\mathbf {\sigma =2}\): In this case it holds that \(f_{\theta }(\eta _{2},\hat{\eta }_{\theta },\ddot{\theta }_{\star })>-\bar{\tau }_{\theta }\), implying that \(g_{2}(\bar{\tau }_{\theta },\eta _{2},\hat{\eta }_{\theta },\ddot{\theta }_{\star })=b_{\theta }\dot{\phi }\dot{\psi }-\frac{a_{\theta }}{J_{y}}\dot{\theta }+\hat{\eta }_{\theta }-\ddot{\theta }_{\star }\), and the tracking error dynamics (40) is rewritten as

$$\begin{aligned} \dot{e}_{\theta } & =\varepsilon _{\theta },\end{aligned}$$
(43a)
$$\begin{aligned} \dot{\varepsilon }_{\theta } & =b_{\theta }\dot{\phi }\dot{\psi }-\frac{a_{\theta }}{J_{y}}\dot{\theta }+d_{\theta }-\ddot{\theta }_{\star }. \end{aligned}$$
(43b)

If constraint (30a), i.e., \(\hat{\eta }_{\theta }(t)=d_{\theta }(t)\ge \frac{a_{\theta }}{J_{y}}\dot{\theta }(t)-b_{\theta }\dot{\phi }(t)\dot{\psi }(t)+\ddot{\theta }_{\star }(t)\), holds for all \(t\ge t_{f1}\), then it follows that \(f_{\theta }(\eta _{2}(t),\hat{\eta }_{\theta }(t),\ddot{\theta }_{\star }(t))\le 0\), for all \(t\ge t_{f1}\). Taking into account that \(\varepsilon _{\theta }=\dot{\theta }-\dot{\theta }_{\star }\), (43b) can be written as follows

$$ \dot{\varepsilon }_{\theta }=b_{\theta }\dot{\phi }\dot{\psi }-\frac{a_{\theta }}{J_{y}}\dot{\theta }_{\star }-\frac{a_{\theta }}{J_{y}}\varepsilon _{\theta }+d_{\theta }. $$

The solution of the previous differential equation is given by

$$\begin{aligned} \varepsilon _{\theta }(t)=\varepsilon _{\theta }(t_{f1})e^{-\frac{a_{\theta }}{J_{y}}(t-t_{f1})} \\ +\int _{t_{f1}}^{t}e^{-\frac{a_{\theta }}{J_{y}}(t-\tau )}(b_{\theta }\dot{\phi }(\tau )\dot{\psi }(\tau )-\frac{a_{\theta }}{J_{y}}\dot{\theta }_{\star }(\tau )+d_{\theta }(\tau )-\ddot{\theta }_{\star }(\tau ))d\tau , \end{aligned}$$

and, since \(f_{\theta }(\eta _{2}(t),\hat{\eta }_{\theta }(t),\ddot{\theta }_{\star }(t))\le 0\) implies that \(b_{\theta }\dot{\phi }(t)\dot{\psi }(t)-\frac{a_{\theta }}{J_{y}}\dot{\theta }(t)+d_{\theta }(t)-\ddot{\theta }_{\star }(t)\ge 0\), for all \(t\ge t_{f1}\), it is clear that

$$ \lim _{t\rightarrow \infty }\varepsilon _{\theta }(t)>0\Rightarrow \lim _{t\rightarrow \infty }e_{\theta }(t)>0. $$

Therefore, the previous statements imply that

$$ \lim _{t\rightarrow \infty }v_{\theta }(t)<0, $$

and thus

$$ \lim _{t\rightarrow \infty }\bar{\tau }_{\theta }(t)=\lim _{t\rightarrow \infty }(v_{\theta }-k_{\theta 0}\left\lceil e_{\theta }\right\rfloor ^{\frac{1}{3}}-k_{\theta 1}\left\lceil \varepsilon _{\theta }\right\rfloor ^{\frac{1}{2}})=-\infty . $$

On the other hand, note that, due to the convergence properties of the CTC, the roll angular velocity \(\dot{\phi }\) converges to a bounded reference \(\dot{\phi }_{\star }\); the yaw angular velocity \(\dot{\psi }\) is bounded, as it is shown later by Lemma 4, and due to Assumption 1, the disturbance term \(d_{\theta }\) is also bounded. Thus, it follows that \(f_{\theta }(\eta _{2},\hat{\eta }_{\theta },\ddot{\theta }_{\star })=-b_{\theta }\dot{\phi }\dot{\psi }+\frac{a_{\theta }}{J_{y}}\dot{\theta }-d_{\theta }(t)+\ddot{\theta }_{\star }\) is bounded and \(f_{\theta }(\eta _{2}(t),\hat{\eta }_{\theta }(t),\ddot{\theta }_{\star }(t))\le 0\), for all \(t\ge t_{f1}\). Therefore, there always exists a finite time \(t_{\sigma 1}\) such that \(f_{\theta }(\eta _{2}(t),\hat{\eta }_{\theta }(t),\ddot{\theta }_{\star }(t))\le -\bar{\tau }_{\theta }(t)\) holds for all \(t\ge t_{\sigma 1}\), and hence, system (41) always switches to the case \(\sigma =1\), for which, (\(e_{\theta },\varepsilon _{\theta },v_{\theta })=0\) is UFTS.

The previous analysis, together with the fact that (\(e_{\phi },\varepsilon _{\phi })=0\) is UFTS, implies that, at steady state \((e_{\eta },\varepsilon _{\eta })=0\), the attitude tracking error dynamics is UFTS. The same procedure can be followed to analyze the convergence properties of Algorithm 1 when other rotors have failed. This concludes the proof.\(\Box \)

1.3 Proof of Lemma 4

In this proof, the yaw dynamics is analyzed in the occurrence of a rotor failure. With this aim, the results given by Lemmas 13 are considered; then, it is demonstrated that the yaw angular acceleration can be bounded at steady state. Next, the conditions to ensure the boundedness of the yaw angular velocity are obtained by means of the acceleration upper bound.

Consider the loss of the first rotor. Then, using (23), the yaw dynamics (31) can be rewritten as

$$\begin{aligned} \ddot{\psi }=-\frac{K_{\tau }}{J_{z}}(u_z+2\frac{\tau _{\theta }}{L})+b_{\psi }\dot{\phi }\dot{\theta }-\frac{a_{\psi }}{J_{z}}\dot{\psi }+d_{\psi }, \end{aligned}$$
(44)

and by substituting \(u_z\), given in (17a), one obtains

$$\begin{aligned} \ddot{\psi }=-\dfrac{K_{\tau }}{J_{z}}(m\sqrt{\nu _{x}^{2}+\nu _{y}^{2}+(\nu _{z}+g)^{2}}+2\dfrac{\tau _{\theta }}{L})+b_{\psi }\dot{\phi }\dot{\theta }-\frac{a_{\psi }}{J_{z}}\dot{\psi }+d_{\psi }. \end{aligned}$$
(45)

As it was shown by Lemma 3, at steady state, \(\tau _{\theta }=J_{y}(-b_{\theta }\dot{\phi }\dot{\psi }+\frac{a_{\theta }}{J_{y}}\dot{\theta }-\hat{\eta }_{\theta }+\ddot{\theta }_{\star })\) as in (42). Then, at steady state, (45) satisfies

$$\begin{aligned} \ddot{\psi }=-\dfrac{mK_{\tau }}{J_{z}}\sqrt{\nu _{x}^{2}+\nu _{y}^{2}+(\nu _{z}+g)^{2}}+b_{\psi }\dot{\phi }\dot{\theta } \nonumber \\ -\frac{a_{\psi }}{J_{z}}\dot{\psi }+d_{\psi }-\dfrac{2K_{\tau }J_{y}}{LJ_{z}}(\frac{a_{\theta }}{J_{y}}\dot{\theta }-b_{\theta }\dot{\phi }\dot{\psi }-\hat{\eta }_{\theta }+\ddot{\theta }_{\star }). \end{aligned}$$
(46)

Taking into account that the angular velocities and the disturbances are bounded, (46) satisfies

$$\begin{aligned} ||\ddot{\psi }||_{f_1}\le L_{\psi _1}+\left( \dfrac{2K_{\tau }J_{y}b_{\theta }\delta _{\phi }}{LJ_{z}}-\frac{a_{\psi }}{J_{z}}\right) \dot{\psi }, \end{aligned}$$
(47)

with \(L_{\psi _1}=b_{\psi }\delta _{\phi }\delta _{\theta }+D_{\psi }-\dfrac{mK_{\tau }}{J_{z}}L_{\nu }+\dfrac{2K_{\tau }}{LJ_{z}}(a_{\theta }\delta _{\theta }+J_{y}(D_{\theta }+\delta _{\theta \star }))\). Subsequently, the solution of (47) satisfies

$$\begin{aligned} ||\dot{\psi }||_{f_1}\le ||\dot{\psi }(t_{f_{1}})||_{f_1}e^{\left( \frac{2K_{\tau }J_{y}}{LJ_{z}}b_{\theta }\delta _{\phi }-\frac{a_{\psi }}{J_{z}}\right) \left( t-t_{f_{1}}\right) } +L_{\psi 1}\left( 1-e^{\left( \frac{2K_{\tau }J_{y}}{LJ_{z}}b_{\theta }\delta _{\phi }-\frac{a_{\psi }}{J_{z}}\right) \left( t-t_{f_{1}}\right) }\right) , \end{aligned}$$

for all \(t\ge t_{f_1}\). Therefore, if (32) holds, i.e., \(\delta _{\phi }<\frac{LJ_{z}a_{\psi }}{2K_{\tau }J_{y}J_{z}b_{\theta }}\), for all \(t\ge t_{f_1}\), then it is clear that

$$\begin{aligned} \lim _{t\rightarrow \infty }||\dot{\psi }||_{f_1}\le L_{\psi 1}. \end{aligned}$$

The same result is obtained if the second rotor fails and similar conclusions can be obtained considering a failure in the other rotors. This concludes the proof.\(\Box \)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Falcón, R., Ríos, H., Dzul, A. (2023). Sliding-Mode-Based Fault Diagnosis and Fault-Tolerant Control for Quad-Rotors. In: Oliveira, T.R., Fridman, L., Hsu, L. (eds) Sliding-Mode Control and Variable-Structure Systems. Studies in Systems, Decision and Control, vol 490. Springer, Cham. https://doi.org/10.1007/978-3-031-37089-2_19

Download citation

Publish with us

Policies and ethics