Skip to main content

Physical Zero-Knowledge Proof for Ball Sort Puzzle

  • Conference paper
  • First Online:
Unity of Logic and Computation (CiE 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13967))

Included in the following conference series:

Abstract

Ball sort puzzle is a popular logic puzzle consisting of several bins containing balls of multiple colors. Each bin works like a stack; a ball has to follow the last-in first-out order. The player has to sort the balls by color such that each bin contains only balls of a single color. In this paper, we propose a physical zero-knowledge proof protocol for the ball sort puzzle using a deck of playing cards, which enables a prover to physically show that he/she knows a solution with t moves of the ball sort puzzle without revealing it. Our protocol is the first zero-knowledge proof protocol for an interactive puzzle involving moving objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bultel, X., Dreier, J., Dumas, J.-G., Lafourcade, P.: Physical zero-knowledge proofs for Akari, Takuzu, Kakuro and KenKen. In: Proceedings of the 8th International Conference on Fun with Algorithms (FUN), pp. 8:1–8:20 (2016)

    Google Scholar 

  2. Bultel, X., et al.: Physical zero-knowledge proof for Makaro. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 111–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03232-6_8

    Chapter  Google Scholar 

  3. Chien, Y.-F., Hon, W.-K.: Cryptographic and physical zero-knowledge proof: from sudoku to nonogram. In: Boldi, P., Gargano, L. (eds.) FUN 2010. LNCS, vol. 6099, pp. 102–112. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13122-6_12

    Chapter  Google Scholar 

  4. Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: Interactive physical zero-knowledge proof for Norinori. In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 166–177. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4_14

    Chapter  Google Scholar 

  5. Fukusawa, T., Manabe, Y.: Card-based zero-knowledge proof for the nearest neighbor property: zero-knowledge proof of ABC end view. In: Proceedings of the 12th International Conference on Security, Privacy and Applied Cryptographic Engineering (SPACE), pp. 147–161 (2022)

    Google Scholar 

  6. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design. J. ACM 38(3), 691–729 (1991)

    Article  MATH  Google Scholar 

  7. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Google Play: ball sort puzzle. https://play.google.com/store/search?q=ball%20sort%20puzzle

  9. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical zero-knowledge proof systems for solutions of sudoku puzzles. Theory Comput. Syst. 44(2), 245–268 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J. (eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21819-9_16

    Chapter  Google Scholar 

  11. Ito, T., et al.: Sorting balls and water: equivalence and computational complexity. In: Proceedings of the 11th International Conference on Fun with Algorithms (FUN), pp. 16:1–16:17 (2022)

    Google Scholar 

  12. Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography. In: Proceedings of the 10th International Conference on Fun with Algorithms (FUN), pp. 17:1–17:23 (2020)

    Google Scholar 

  13. Lafourcade, P., Miyahara, D., Mizuki, T., Robert, L., Sasaki, T., Sone, H.: How to construct physical zero-knowledge proofs for puzzles with a “single loop" condition. Theoret. Comput. Sci. 888, 41–55 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Miyahara, D., et al.: Card-based ZKP protocols for Takuzu and Juosan. In: Proceedings of the 10th International Conference on Fun with Algorithms (FUN), pp. 20:1–20:21 (2020)

    Google Scholar 

  15. Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge proof for kakuro. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E102.A(9), 1072–1078 (2019)

    Google Scholar 

  16. Robert, L., Miyahara, D., Lafourcade, P., Libralesso, L., Mizuki, T.: Physical zero-knowledge proof and NP-completeness proof of Suguru puzzle. Inf. Comput. 285(B), 104858 (2022)

    Google Scholar 

  17. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Card-based ZKP for connectivity: applications to Nurikabe, Hitori, and Heyawake. N. Gener. Comput. 40(1), 149–171 (2022)

    Article  MATH  Google Scholar 

  18. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Card-based ZKP protocol for Nurimisaki. In: Proceedings of the 24th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), pp. 285–298 (2022)

    Google Scholar 

  19. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Hide a liar: card-based ZKP protocol for Usowan. In: Proceedings of the 17th Annual Conference on Theory and Applications of Models of Computation (TAMC), pp. 201–217 (2022)

    Google Scholar 

  20. Ruangwises, S.: An improved physical ZKP for nonogram. In: Proceedings of the 15th Annual International Conference on Combinatorial Optimization and Applications (COCOA), pp. 262–272 (2021)

    Google Scholar 

  21. Ruangwises, S.: Two standard decks of playing cards are sufficient for a ZKP for sudoku. N. Gener. Comput. 40(1), 49–65 (2022)

    Article  MATH  Google Scholar 

  22. Ruangwises, S., Itoh, T.: How to physically verify a rectangle in a grid: a physical ZKP for Shikaku. In: Proceedings of the 11th International Conference on Fun with Algorithms (FUN), pp. 24:1–24:12 (2022)

    Google Scholar 

  23. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for numberlink puzzle and \(k\) vertex-disjoint paths problem. N. Gener. Comput. 39(1), 3–17 (2021)

    Article  Google Scholar 

  24. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for ripple effect. Theoret. Comput. Sci. 895, 115–123 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ruangwises, S., Itoh, T.: Physical ZKP for connected spanning subgraph: applications to bridges puzzle and other problems. In: Kostitsyna, I., Orponen, P. (eds.) UCNC 2021. LNCS, vol. 12984, pp. 149–163. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87993-8_10

    Chapter  MATH  Google Scholar 

  26. Ruangwises, S., Itoh, T.: Physical ZKP for Makaro using a standard deck of cards. In: Proceedings of the 17th Annual Conference on Theory and Applications of Models of Computation (TAMC), pp. 43–54 (2022)

    Google Scholar 

  27. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge proof for Sudoku. Theoret. Comput. Sci. 839, 135–142 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shinagawa, K., et al.: Card-based protocols using regular polygon cards. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E100.A(9), 1900–1909 (2017)

    Google Scholar 

  29. Ueda, I., Miyahara, D., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: Secure implementations of a random bisection cut. Int. J. Inf. Secur. 19(4), 445–452 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

The author would like to thank Daiki Miyahara for a valuable discussion on this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suthee Ruangwises .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruangwises, S. (2023). Physical Zero-Knowledge Proof for Ball Sort Puzzle. In: Della Vedova, G., Dundua, B., Lempp, S., Manea, F. (eds) Unity of Logic and Computation. CiE 2023. Lecture Notes in Computer Science, vol 13967. Springer, Cham. https://doi.org/10.1007/978-3-031-36978-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36978-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36977-3

  • Online ISBN: 978-3-031-36978-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics