Skip to main content

Spatio-Temporal Agricultural Drought Monitoring Using Remote Sensing Indices

  • Chapter
  • First Online:
Advancement of GI-Science and Sustainable Agriculture

Abstract

Drought is an intricate weather phenomenon; it directly affects food security and agricultural productivity. Accurate prediction of agricultural drought helps to take mitigation steps for reducing production losses. In the present study, agricultural drought was assessed by using the Normalized Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), Temperature Condition Index (TCI), and Vegetation Health Index (VHI) based on Landsat 8 and 9 data from 2013–2022. The LULC maps were also prepared using the supervised classification based on the maximum likelihood algorithm by the semi-automatic classification plugin (SCP) in QGIS from Sentinel-2 images. The remote sensing indices were calculated using a raster calculator in ArcGIS software. The results of VCI indicate that 2014 and 2017 years were highly affected by drought, whereas 2016 was the most vulnerable year according to TCI. In 2017, the entire district was badly affected by VCI and TCI. The VHI results showed that 2015, 2016, and 2018 were the most drought-prone years. The spatial agricultural drought result shows that Chattna, Bankura I, Onda, and Ranibudh were extreme drought-affected blocks. Drought greatly impacts agriculture, so satellite-based drought data would benefit the understanding of the drought of Bankura district risk within the entire geographical area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alahacoon N, Edirisinghe M, Ranagalage M (2021) Satellite-based meteorological and agricultural drought monitoring for agricultural sustainability in Sri Lanka. Sustainability 13(6):3427. https://doi.org/10.3390/su13063427

    Article  Google Scholar 

  • Alam J, Saha P, Mitra R, Das J (2023) Investigation of spatio-temporal variability of meteorological drought in the Luni River Basin, Rajasthan, India. Arab J Geosci 16(3):201. https://doi.org/10.1007/s12517-023-11290-8

    Article  Google Scholar 

  • Apurv T, Cai X (2021) Regional drought risk in the contiguous United States. Geophys Res Lett 48(5):e2020GL092200-1–e2020GL092200-12. https://doi.org/10.1029/2020GL092200

  • Ayugi B, Eresanya EO, Onyango AO, Ogou FK, Okoro EC, Okoye CO, Ongoma V et al (2022) Review of meteorological drought in Africa: historical trends, impacts, mitigation measures, and prospects. Pure Appl Geophys 179(4):1365–1386

    Article  Google Scholar 

  • Basak A, Rahman ATMS, Das J, Hosonod T, Kisi O (2022) Drought forecasting using the Prophet Model in semi-arid climate region of western India. Hydrol Sci J 67(9):1397–1417. https://doi.org/10.1080/02626667.2022.2082876

    Article  Google Scholar 

  • Bhunia P, Das P, Maiti R (2020) Meteorological drought study through SPI in three drought prone districts of West Bengal, India. Earth Syst Environ 4(1):43–55. https://doi.org/10.1007/s41748-019-00137-6

    Article  Google Scholar 

  • Census of India (2011) District census handbook, Bankura, Government of India

    Google Scholar 

  • Cunha APM, Alvalá RC, Nobre CA, Carvalho MA (2015) Monitoring vegetative drought dynamics in the Brazilian semiarid region. Agric for Meteorol 214–215:494–505

    Article  Google Scholar 

  • Das S, Choudhury MR, Nanda S (2013) Geospatial assessment of agricultural drought (a case study of Bankura District, West Bengal). Int J Agric Sci Res (IJASR) 3(2):1–27

    Google Scholar 

  • Das J, Gayen A, Saha P, Bhattacharya SK (2020) Meteorological drought analysis using Standardized Precipitation Index over Luni River Basin in Rajasthan, India. SN Appl Sci 2(9):1–17. https://doi.org/10.1007/s42452-020-03321-w

    Article  Google Scholar 

  • Dutta D, Kundu A, Patel NR, Saha SK, Siddiqui AR (2015) Assessment of agricultural drought in Rajasthan (India) using remote sensing derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI). Egypt J Remote Sens Space Sci 18(1):53–63. https://doi.org/10.1016/j.ejrs.2015.03.006

  • Gidey E, Dikinya O, Sebego R, Segosebe E, Zenebe A (2018) Analysis of the long-term agricultural drought onset, cessation, duration, frequency, severity and spatial extent using Vegetation Health Index (VHI) in Raya and its environs, Northern Ethiopia. Environ Syst Res 7(1):1–18

    Article  Google Scholar 

  • Glenn DM, Tabb A (2019) Evaluation of five methods to measure normalized difference vegetation index (NDVI) in apple and citrus. Int J Fruit Sci 19(2):191–210

    Article  Google Scholar 

  • Guo H, Wang R, Garfin GM, Zhang A, Lin D (2021) Rice drought risk assessment under climate change: based on physical vulnerability a quantitative assessment method. Sci Total Environ 751:141481. https://doi.org/10.1016/j.scitotenv.2020.141481

    Article  CAS  Google Scholar 

  • Hadri A, Saidi MEM, Boudhar A (2021) Multiscale drought monitoring and comparison using remote sensing in a Mediterranean arid region: a case study from west-central Morocco. Arab J Geosci 14(2):1–18. https://doi.org/10.1007/s12517-021-06493-w

    Article  Google Scholar 

  • Hoque M, Pradhan B, Ahmed N, Alamri A (2021a) Drought vulnerability assessment using geospatial techniques in Southern Queensland, Australia. Sensors 21(20):6896. https://doi.org/10.3390/s21206896

    Article  Google Scholar 

  • Hoque MAA, Pradhan B, Ahmed N, Sohel MSI (2021b) Agricultural drought risk assessment of Northern New South Wales, Australia using geospatial techniques. Sci Total Environ 756:143600. https://doi.org/10.1016/j.scitotenv.2020.143600

    Article  CAS  Google Scholar 

  • Kim JE, Yu J, Ryu JH, Lee JH, Kim TW (2021) Assessment of regional drought vulnerability and risk using principal component analysis and a Gaussian mixture model. Nat Hazards 109(1):707–724. https://doi.org/10.1007/s11069-021-04854-y

  • Kogan FN (1995) Application of vegetation index and brightness temperature for drought detection. Adv Space Res 15(11):91–100. https://doi.org/10.1016/0273-1177(95)00079-T

    Article  Google Scholar 

  • Kogan FN (1997) Global drought watch from space. Bull Am Meteor Soc 78(4):621–636

    Article  Google Scholar 

  • Liu Q, Zhang J, Zhang H, Yao F, Bai Y, Zhang S, Liu Q (2021) Evaluating the performance of eight drought indices for capturing soil moisture dynamics in various vegetation regions over China. Sci Total Environ 789:147803. https://doi.org/10.1016/j.scitotenv.2021.147803

    Article  CAS  Google Scholar 

  • Moisa MB, Merga BB, Gemeda DO (2022) Multiple indices-based assessment of agricultural drought: a case study in Gilgel Gibe Sub-basin, Southern Ethiopia. Theor Appl Climatol 148(1):455–464. https://doi.org/10.1007/s00704-022-03962-4

    Article  Google Scholar 

  • Nath R, Nath D, Li Q, Chen W, Cui X (2017) Impact of drought on agriculture in the Indo-Gangetic Plain, India. Adv Atmos Sci 34(3):335–346

    Article  Google Scholar 

  • Nejadrekabi M, Eslamian S, Zareian MJ (2022) Spatial statistics techniques for SPEI and NDVI drought indices: a case study of Khuzestan Province. Int J Environ Sci Technol 19:6573–6594

    Google Scholar 

  • Orlovsky L, Kogan F, Eshed E, Dugarjav C (2011) Monitoring droughts and pastures productivity in Mongolia using NOAA-AVHRR data. In: Use of satellite and in-situ data to improve sustainability. Springer, Dordrecht, pp 69–79

    Google Scholar 

  • Patil MB, Desai CG, Umrikar BN (2012) Image classification tool for land use/land cover analysis: a comparative study of maximum likelihood and minimum distance method. Int J Geol Earth Environ Sci 2(3):189–196

    Google Scholar 

  • Pei F, Wu C, Liu X, Li X, Yang K, Zhou Y, Wang K, Xu L, Xia G (2018) Monitoring the vegetation activity in China using vegetation health indices. Agric for Meteorol 248:215–227

    Article  Google Scholar 

  • Peng Y, Gitelson AA (2011) Application of chlorophyll-related vegetation indices for remote estimation of maize productivity. Agric For Meteorol 151(9):1267–1276. https://doi.org/10.1016/j.agrformet.2011.05.005

  • Raha S, Gayen SK (2020) Simulation of meteorological drought using exponential smoothing models: a study on Bankura District, West Bengal, India. SN Appl Sci 2(5):909

    Article  Google Scholar 

  • Seiler RA, Kogan F, Sullivan J (1998) AVHRR-based vegetation and temperature condition indices for drought detection in Argentina. Adv Space Res 21(3):481–484

    Article  Google Scholar 

  • Sultana MS, Gazi MY, Mia MB (2021) Multiple indices based agricultural drought assessment in the northwestern part of Bangladesh using geospatial techniques. Environ Challenges 4:100120-1–100120-17

    Google Scholar 

  • Swain S, Wardlow BD, Narumalani S, Tadesse T, Callahan K (2011) Assessment of vegetation response to drought in Nebraska using Terra-MODIS land surface temperature and normalized difference vegetation index. Gisci Remote Sens 48(3):432–455

    Article  Google Scholar 

  • Wan Z (2006) MODIS land surface temperature products users’guide. Institute for Computational Earth System Science, University of California, SantaBarbara

    Google Scholar 

  • Wang JL, Yu YH (2021) Comprehensive drought monitoring in Yunnan Province, China using multisource remote sensing data. J Mt Sci 18(6):1537–1549. https://doi.org/10.1007/s11629-020-6333-7

    Article  Google Scholar 

  • Zambrano F, Lillo-Saavedra M, Verbist K, Lagos O (2016) Sixteen years of agricultural drought assessment of the BioBío region in Chile using a 250 m resolution Vegetation Condition Index (VCI). Remote Sens 8(6):530

    Article  Google Scholar 

  • Zeng J, Zhang R, Qu Y, Bento VA, Zhou T, Lin Y, Wang Q (2022) Improving the drought monitoring capability of VHI at the global scale via ensemble indices for various vegetation types from 2001 to 2018. Weather Clim Extremes 35:100412. https://doi.org/10.1016/j.wace.2022.100412

    Article  Google Scholar 

  • Zhang B, Wu P, Zhao X, Wang Y, Gao X, Cao X (2013) A drought hazard assessment index based on the VIC–PDSI model and its application on the Loess Plateau, China. Theor Appl Climatol 114(1):125–138. https://doi.org/10.1007/s00704-012-0826-4

    Article  CAS  Google Scholar 

  • Zhao X, Xia H, Liu B, Jiao W (2022) Spatiotemporal comparison of drought in Shaanxi–Gansu–Ningxia from 2003 to 2020 using various drought indices in Google Earth Engine. Remote Sens 14(7):1570. https://doi.org/10.3390/rs14071570

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piu Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, S.S., Mukherjee, K., Kundu, P., Saha, P. (2023). Spatio-Temporal Agricultural Drought Monitoring Using Remote Sensing Indices. In: Das, J., Halder, S. (eds) Advancement of GI-Science and Sustainable Agriculture. GIScience and Geo-environmental Modelling. Springer, Cham. https://doi.org/10.1007/978-3-031-36825-7_4

Download citation

Publish with us

Policies and ethics