Abstract
Pharmacogenomic studies in epilepsy are necessary due to the high prevalence of this disease and the high percentage of drug resistance phenotype. Several altered genes encode proteins involved in drug metabolism and drug transport (pharmacokinetics), function and expression of receptors, ion channels, metabolic regulatory proteins, or secondary messengers of signaling pathways (pharmacodynamics).
Despite the vast spectrum of antiseizure medications (ASMs) developed to date, refractory epilepsy remains consistently prevalent (30–40%). Since no ideal drug capable of curing all forms of epilepsy exists, the molecular identification of the genetic alterations responsible for each phenotype is the first step toward designing drugs capable of reversing the abnormality and thus developing personalized pharmacogenetic therapy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Almuqbil M, Go C, Nagy LL, et al. New paradigm for the treatment of glucose transporter 1 deficiency syndrome: low glycemic index diet and modified high amylopectin cornstarch. Pediatr Neurol. 2015;53:243–6. https://doi.org/10.1016/j.pediatrneurol.2015.06.018.
Alvariza S, Fagiolino P, Vázquez M, et al. Chronic administration of phenytoin induces efflux transporter overexpression in rats. Pharmacol Rep. 2014;66:946–51. https://doi.org/10.1016/j.pharep.2014.06.007.
Amir RE, Van den Veyver IB, Wan M, et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23:185–8. https://doi.org/10.1038/13810.
Anderle P, Huang Y, Sadée W. Intestinal membrane transport of drugs and nutrients: genomics of membrane transporters using expression microarrays. Eur J Pharm Sci. 2004;21:17–24. https://doi.org/10.1016/s0928-0987(03)00169-6.
Auzmendi J, Palestro P, Blachman A, et al. Cannabidiol (CBD) inhibited rhodamine-123 efflux in cultured vascular endothelial cells and astrocytes under hypoxic conditions. Front Behav Neurosci. 2020;14:32. https://doi.org/10.3389/fnbeh.2020.00032.
Balestrini S, Sisodiya SM. Audit of use of stiripentol in adults with Dravet syndrome. Acta Neurol Scand. 2017;135:73–9. https://doi.org/10.1111/ane.12611.
Balestrini S, Sisodiya SM. Pharmacogenomics in epilepsy. Neurosci Lett. 2018;667:27–39. https://doi.org/10.1016/j.neulet.2017.01.014.
Bhattacharya A, Kaphzan H, Alvarez-Dieppa AC, et al. Genetic removal of p70 S6 kinase 1 corrects molecular, synaptic, and behavioral phenotypes in fragile X syndrome mice. Neuron. 2012;76:325–37. https://doi.org/10.1016/j.neuron.2012.07.022.
Bi W, Glass IA, Muzny DM, et al. Whole exome sequencing identifies the first STRADA point mutation in a patient with polyhydramnios, megalencephaly, and symptomatic epilepsy syndrome (PMSE). Am J Med Genet A. 2016;170:2181–5. https://doi.org/10.1002/ajmg.a.3772.
Biswas M, Ershadian M, Shobana J, et al. Associations of HLA genetic variants with carbamazepine-induced cutaneous adverse drug reactions: an updated meta-analysis. Clin Transl Sci. 2022;15:1887–905. https://doi.org/10.1111/cts.13291.
Brzozowska N, Li KM, Wang XS, et al. ABC transporters P-gp and Bcrp do not limit the brain uptake of the novel antipsychotic and anticonvulsant drug cannabidiol in mice. PeerJ. 2016;4:e2081. https://doi.org/10.7717/peerj.2081.
Burnashev N, Szepetowski P. NMDA receptor subunit mutations in neurodevelopmental disorders. Curr Opin Pharmacol. 2015;20:73–82. https://doi.org/10.1016/j.coph.2014.11.008.
Calderon-Ospina CA, Galvez JM, Lopez-Cabra C, et al. Possible genetic determinants of response to phenytoin in a group of Colombian patients with epilepsy. Front Pharmacol. 2020;11:555. https://doi.org/10.3389/fphar.2020.00555.
Chen YY, Feng YY, Chen YN, et al. Association between ABCB1 C3435T polymorphism and antiepileptic drug resistance in epilepsy: an updated meta-analysis based on 62 studies. Int J Clin Pharmacol Ther. 2022;60:146–58. https://doi.org/10.5414/CP204045.
Cho CH. Frontier of epilepsy research—mTOR signaling pathway. Exp Mol Med. 2011;43:231–74. https://doi.org/10.3858/emm.2011.43.5.032.
Christians U, Schmitz V, Haschke M. Functional interactions between P-glycoprotein and CYP3A in drug metabolism. Expert Opin Drug Metab Toxicol. 2005;1:641–54. https://doi.org/10.1517/17425255.1.4.641.
Chung WH, Chang WC, Lee YS, et al. Genetic variants associated with phenytoin-related severe cutaneous adverse reactions. JAMA. 2014;312:525–34. https://doi.org/10.1001/jama.2014.7859.
Cordon-Cardo C, O’Brien JP, Boccia J, et al. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem. 1990;38:1277–87. https://doi.org/10.1177/38.9.1974900.
Coughlin CR 2nd, Swanson MA, Spector E, et al. The genotypic spectrum of ALDH7A1 mutations resulting in pyridoxine dependent epilepsy: a common epileptic encephalopathy. J Inherit Metab Dis. 2019;42:353–61. https://doi.org/10.1002/jimd.12045.
Crino PB. mTOR signaling in epilepsy: insights from malformations of cortical development. Cold Spring Harb Perspect Med. 2015;5:a022442. https://doi.org/10.1101/cshperspect.a022442.
Curatolo P, Bombardieri R, Jozwiak S. Tuberous sclerosis. Lancet. 2008;372:657–68. https://doi.org/10.1016/S0140-6736(08)61279-9.
Czornyj L, Lazarowski A. ABC-transporters as stem-cell markers in brain dysplasia/tumor epilepsies. Front Biosci (Landmark Ed). 2014;19:1425–35. https://doi.org/10.2741/4293.
Czornyj L, Auzmendi J, Lazarowski A. Transporter hypothesis in pharmacoresistant epilepsies. Is it at the central or peripheral level? Epilepsia Open. 2022;7(Suppl 1):S34–46. https://doi.org/10.1002/epi4.12537.
Davis BH, Beasley TM, Amaral M, et al. Pharmacogenetic predictors of cannabidiol response and tolerability in treatment-resistant epilepsy. Clin Pharmacol Ther. 2021;110:1368–80. https://doi.org/10.1002/cpt.2408.
De Giorgis V, Veggiotti P. GLUT1 deficiency syndrome 2013: current state of the art. Seizure. 2013;22:803–11. https://doi.org/10.1016/j.seizure.2013.07.003.
De Leon J. The effects of antiepileptic inducers in neuropsychopharmacology, a neglected issue. Part II: Pharmacological issues and further understanding. Rev Psiquiatr Salud Ment. 2015;8:167–88. https://doi.org/10.1016/j.rpsm.2014.10.005.
Depondt C. Pharmacogenetics in epilepsy treatment: sense or nonsense? Fut Med. 2008;5:123–31. https://doi.org/10.2217/17410541.5.2.123.
Ding J, Li X, Tian H, et al. SCN1A mutation—beyond Dravet syndrome: a systematic review and narrative synthesis. Front Neurol. 2021;12:743726. https://doi.org/10.3389/fneur.2021.743726.
Doohan PT, Oldfield LD, Arnold JC, et al. Cannabinoid interactions with cytochrome P450 drug metabolism: a full-spectrum characterization. AAPS J. 2021;23:91. https://doi.org/10.1208/s12248-021-00616-7.
Ebid AH, Ahmed MM, Mohammed SA. Therapeutic drug monitoring and clinical outcomes in epileptic Egyptian patients: a gene polymorphism perspective study. Ther Drug Monit. 2007;29:305–12. https://doi.org/10.1097/FTD.0b013e318067ce90.
Escalante-Santiago D, Feria-Romero IA, Ribas-Aparicio RM, et al. MDR-1 and MRP2 gene polymorphisms in mexican epileptic pediatric patients with complex partial seizures. Front Neurol. 2014;5:184. https://doi.org/10.3389/fneur.2014.00184.
Feinshtein V, Erez O, Ben-Zvi Z, et al. Cannabidiol changes P-gp and BCRP expression in trophoblast cell lines. PeerJ. 2013;1:e153. https://doi.org/10.7717/peerj.153.
Frye RE, Donner E, Golja A, et al. Folinic acid-responsive seizures presenting as breakthrough seizures in a 3-month-old boy. J Child Neurol. 2003;18:562–9. https://doi.org/10.1177/08830738030180081001.
Gaston TE, Bebin EM, Cutter GR, et al. Interactions between cannabidiol and commonly used antiepileptic drugs. Epilepsia. 2017;58:1586–92. https://doi.org/10.1111/epi.13852.
Geffrey AL, Pollack SF, Bruno PL, et al. Drug-drug interaction between clobazam and cannabidiol in children with refractory epilepsy. Epilepsia. 2015;56:1246–51. https://doi.org/10.1111/epi.13060.
Gospe SM Jr. Pyridoxine-Dependent Epilepsy–ALDH7A1. In: Adam MP, Everman DB, Mirza GM, et al (editors) GeneReviews® [Internet] Seattle (WA): University of Washington, Seattle; 2022. pp. 1993–2023. http://www.genereviews.org/.
Grønskov K, Brøndum-Nielsen K, et al. A nonsense mutation in FMR1 causing fragile X syndrome. Eur J Hum Genet. 2011;19:489–91. https://doi.org/10.1038/ejhg.2010.223.
Guevara N, Maldonado C, Uría M, et al. Role of CYP2C9, CYP2C19 and EPHX polymorphism in the pharmacokinetic of phenytoin: a study on Uruguayan Caucasian subjects. Pharmaceuticals (Basel). 2017;10:73. https://doi.org/10.3390/ph10030073.
Hallett L, Foster T, Liu Z. Burden of disease and unmet needs in tuberous sclerosis complex with neurological manifestations: systematic review. Curr Med Res Opin. 2011;27:1571–83. https://doi.org/10.1185/03007995.2011.586687.
Hassel B, Rogne AG, Hope S. Intellectual disability associated with pyridoxine-responsive epilepsies: the need to protect cognitive development. Front Psych. 2019;10:116. https://doi.org/10.3389/fpsyt.2019.00116.
Heath G, Colburn WA. An evolution of drug development and clinical pharmacology during the 20th century. J Clin Pharmacol. 2000;40:918–29. https://doi.org/10.1177/00912700022009657.
Hoeffer CA, Sanchez E, Hagerman RJ, et al. Altered mTOR signaling and enhanced CYFIP2 expression levels in subjects with fragile X syndrome. Genes Brain Behav. 2012;11:332–41. https://doi.org/10.1111/j.1601-183X.2012.00768.x.
Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A. 2000;97:3473–8. https://doi.org/10.1073/pnas.97.7.3473.
Hyland K, Buist NR, Powell BR, et al. Folinic acid-responsive seizures: a new syndrome? J Inherit Metab Dis. 1995;18:177–81. https://doi.org/10.1007/BF00711760.
Holland ML, Panetta JA, Hoskins JM, et al. The effects of cannabinoids on P-glycoprotein transport and expression in multidrug-resistant cells. Biochem Pharmacol. 2006;71:1146–54. https://doi.org/10.1016/j.bcp.2005.12.033.
Holland ML, Lau DT, Allen JD, et al. The multidrug transporter ABCG2 (BCRP) is inhibited by plant-derived cannabinoids. Br J Pharmacol. 2007;152:815–24. https://doi.org/10.1038/sj.bjp.0707467.
Irwin SA, Patel B, Idupulapati M, et al. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet. 2001;98:161–7. https://doi.org/10.1002/1096-8628(20010115)98:2<161::aid-ajmg1025>3.0.co;2-b.
Jiang R, Yamaori S, Okamoto Y, et al. Cannabidiol is a potent inhibitor of the catalytic activity of cytochrome P450 2C19. Drug Metab Pharmacokinet. 2013;28:332–8. https://doi.org/10.2133/dmpk.dmpk-12-rg-129.
Jensen S, DiPaolo A, Lastella M, et al. Pharmacogenetics of ABCB1 and brain kinetics of 99m-Tc-MIBI in epilepsy patients. Epilepsia. 2006;47(Suppl 3):88–9 (abstract).
Johannessen CM, Reczek EE, James MF, et al. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Natl Acad Sci U S A. 2005;102:8573–8. https://doi.org/10.1073/pnas.0503224102.
Johannessen CM, Johnson BW, Williams SM, et al. TORC1 is essential for NF1-associated malignancies. Curr Biol. 2008;18:56–62. https://doi.org/10.1016/j.cub.2007.11.066.
Klepper J, Voit T. Facilitated glucose transporter protein type 1 (GLUT1) deficiency syndrome: impaired glucose transport into brain—a review. Eur J Pediatr. 2002;161:295–304. https://doi.org/10.1007/s00431-002-0939-3.
Klotz KA, Hirsch M, Heers M, et al. Effects of cannabidiol on brivaracetam plasma levels. Epilepsia. 2019;60:e74–7. https://doi.org/10.1111/epi.16071.
Klofas LK, Short BP, Snow JP, et al. DEPDC5 haploinsufficiency drives increased mTORC1 signaling and abnormal morphology in human iPSC-derived cortical neurons. Neurobiol Dis. 2020;143:104975. https://doi.org/10.1016/j.nbd.2020.
Kulkantrakorn K. Pyridoxine-induced sensory ataxic neuronopathy and neuropathy: revisited. Neurol Sci. 2014;35:1827–30. https://doi.org/10.1007/s10072-014-1902-6.
Lau N, Feldkamp MM, Roncari L, et al. Loss of neurofibromin is associated with activation of RAS/MAPK and PI3-K/AKT signaling in a neurofibromatosis 1 astrocytoma. J Neuropathol Exp Neurol. 2000;59:759–67. https://doi.org/10.1093/jnen/59.9.759.
Lazarowski A, Sevlever G, Taratuto A, et al. Tuberous sclerosis associated with MDR1 gene expression and drug-resistant epilepsy. Pediatr Neurol. 1999;21:731–4. https://doi.org/10.1016/s0887-8994(99)00074-0.
Lazarowski A, Massaro M, Schteinschnaider A, et al. Neuronal MDR-1 gene expression and persistent low levels of anticonvulsants in a child with refractory epilepsy. Ther Drug Monit. 2004a;26:44–6. https://doi.org/10.1097/00007691-200402000-00010.
Lazarowski A, Lubieniecki F, Camarero S, et al. Multidrug resistance proteins in tuberous sclerosis and refractory epilepsy. Pediatr Neurol. 2004b;30:102–6. https://doi.org/10.1016/S0887-8994(03)00407-7.
Lazarowski AJ, Lubieniecki FJ, Camarero SA, et al. New proteins configure a brain drug resistance map in tuberous sclerosis. Pediatr Neurol. 2006;34:20–4. https://doi.org/10.1016/j.pediatrneurol.2005.06.008.
Lazarowski A, Czornyj L. Genetics of epilepsy and refractory epilepsy. In: Dean M (ed) The genetic basis of human disease. Morgan & Claypool Life Sciences; 2013. p 1–119. https://doi.org/10.4199/C00073ED1V01Y201303GBD002.
Lazarowski A, Lubieniecki F, Camarero S, et al. Stem-cell marker CD34, multidrug resistance proteins P-gp and BCRP in SEGA. Receptor Clin Inv. 2014;1:e53. https://doi.org/10.14800/rci.53.
Li M, Zhou Y, Chen C, et al. Efficacy and safety of mTOR inhibitors (rapamycin and its analogues) for tuberous sclerosis complex: a meta-analysis. Orphanet J Rare Dis. 2019;14:39. https://doi.org/10.1186/s13023-019-1012-x.
Liu L, Chen ZR, Xu HQ, et al. DEPDC5 variants associated malformations of cortical development and focal epilepsy with febrile seizure plus/febrile seizures: the role of molecular sub-regional effect. Front Neurosci. 2020;14:821. https://doi.org/10.3389/fnins.2020.00821.
López-García MA, Feria-Romero IA, Fernando-Serrano H, et al. Genetic polymorphisms associated with antiepileptic metabolism. Front Biosci (Elite Ed). 2014;6:377–86. https://doi.org/10.2741/E713.
López-García MA, Feria-Romero IA, Serrano H, et al. Influence of genetic variants of CYP2D6, CYP2C9, CYP2C19 and CYP3A4 on antiepileptic drug metabolism in pediatric patients with refractory epilepsy. Pharmacol Rep. 2017;69:504–11. https://doi.org/10.1016/j.pharep.2017.01.007.
Löscher W. The pharmacokinetics of antiepileptic drugs in rats: consequences for maintaining effective drug levels during prolonged drug administration in rat models of epilepsy. Epilepsia. 2007;48:1245–58. https://doi.org/10.1111/j.1528-1167.2007.01093.x.
Macdonald RL, Kang JQ, Gallagher MJ. Mutations in GABAA receptor subunits associated with genetic epilepsies. J Physiol. 2010;588:1861–9. https://doi.org/10.1113/jphysiol.2010.186999.
Marsan E, Baulac S. Review: Mechanistic target of rapamycin (mTOR) pathway, focal cortical dysplasia and epilepsy. Neuropathol Appl Neurobiol. 2018;44:6–17. https://doi.org/10.1111/nan.12463.
Mills PB, Camuzeaux SS, Footitt EJ, et al. Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome. Brain. 2014;137:1350–60. https://doi.org/10.1093/brain/awu051.
Mirzaev KB, Fedorinov DS, Ivashchenko DV, et al. ADME pharmacogenetics: future outlook for Russia. Pharmacogenomics. 2019;20:847–65. https://doi.org/10.2217/pgs-2019-0013.
Moloney PB, Cavalleri GL, Delanty N. Epilepsy in the mTORopathies: opportunities for precision medicine. Brain Commun. 2021;3:fcab222. https://doi.org/10.1093/braincomms/fcab222.
Möller E, McIntosh JF, Van Slyke DD. Studies of urea excretion. II: Relationship between urine volume and the rate of urea excretion by normal adults. J Clin Invest. 1928;6:427–65. https://doi.org/10.1172/JCI100206.
Mullen SA, Suls A, De Jonghe P, et al. Absence epilepsies with widely variable onset are a key feature of familial GLUT1 deficiency. Neurology. 2010;75:432–40. https://doi.org/10.1212/WNL.0b013e3181eb58b4.
Munisamy M, Al-Gahtany M, Tripathi M, et al. Impact of MTHFR (C677T) gene polymorphism on antiepileptic drug monotherapy in North Indian epileptic population. Ann Saudi Med. 2015;35:51–7. https://doi.org/10.5144/0256-4947.2015.51.
Nasrin S, Watson CJW, Perez-Paramo YX, et al. Cannabinoid metabolites as inhibitors of major hepatic CYP450 enzymes, with implications for cannabis-drug interactions. Drug Metab Dispos. 2021;49:1070–80. https://doi.org/10.1124/dmd.121.000442.
Nguyen LH, Bordey A. Convergent and divergent mechanisms of epileptogenesis in mTORopathies. Front Neuroanat. 2021;15:664695. https://doi.org/10.3389/fnana.2021.664695.
Olson CO, Pejhan S, Kroft D, et al. MECP2 mutation interrupts nucleolin–mTOR–P70S6K signaling in Rett syndrome patients. Front Genet. 2018;9:635. https://doi.org/10.3389/fgene.2018.00635.
Operto FF, Mazza R, Pastorino GMG, et al. Epilepsy and genetics in Rett syndrome: a review. Brain Behav. 2019;9:e01250. https://doi.org/10.1002/brb3.1250.
Ostendorf AP, Gutmann DH, Weisenberg JL. Epilepsy in individuals with neurofibromatosis type 1. Epilepsia. 2013;54:1810–4. https://doi.org/10.1111/epi.12348.
Pal DK, Pong AW, Chung WK. Genetic evaluation and counseling for epilepsy. Nat Rev Neurol. 2010;6:445–53. https://doi.org/10.1038/nrneurol.2010.92.
Parker WE, Orlova KA, Parker WH, et al. Rapamycin prevents seizures after depletion of STRADA in a rare neurodevelopmental disorder. Sci Transl Med. 2013;5:182ra53. https://doi.org/10.1126/scitranslmed.3005271.
Perelló MI, de Maria CA, Nogueira Arraes AC, et al. Severe cutaneous adverse drug reactions: diagnostic approach and genetic study in a Brazilian case series. Eur Ann Allergy Clin Immunol. 2022;54:207–17. https://doi.org/10.23822/EurAnnACI.1764-1489.193.
Pierson TM, Yuan H, Marsh ED, et al. GRIN2A mutation and early-onset epileptic encephalopathy: personalized therapy with memantine. Ann Clin Transl Neurol. 2014;1:190–8. https://doi.org/10.1002/acn3.39.
Puffenberger EG, Strauss KA, Ramsey KE, et al. Polyhydramnios, megalencephaly and symptomatic epilepsy caused by a homozygous 7-kilobase deletion in LYK5. Brain. 2007;130:1929–41. https://doi.org/10.1093/brain/awm100.
Rocha L, Frías-Soria CL, Ortiz JG, et al. Is cannabidiol a drug acting on unconventional targets to control drug-resistant epilepsy? Epilepsia Open. 2020;5:36–49. https://doi.org/10.1002/epi4.12376.
Santiago-Castañeda C, Huerta de la Cruz S, Martínez-Aguirre C, et al. Cannabidiol reduces short- and long-term high glutamate release after severe traumatic brain injury and improves functional recovery. Pharmaceutics. 2022;14:1609. https://doi.org/10.3390/pharmaceutics14081609.
Sha LZ, Xing XL, Zhang D, et al. Mapping the spatio-temporal pattern of the mammalian target of rapamycin (mTOR) activation in temporal lobe epilepsy. PLoS One. 2012;7:e39152. https://doi.org/10.1371/journal.pone.0039152.
Shima A, Nitta N, Suzuki F, et al. Activation of mTOR signaling pathway is secondary to neuronal excitability in a mouse model of mesio-temporal lobe epilepsy. Eur J Neurosci. 2015;41:976–88. https://doi.org/10.1111/ejn.12835.
Smolarz B, Makowska M, Romanowicz H. Pharmacogenetics of drug-resistant epilepsy (review of literature). Int J Mol Sci. 2021;22:11696. https://doi.org/10.3390/ijms222111696.
Socała K, Wyska E, Szafarz M, et al. Acute effect of cannabidiol on the activity of various novel antiepileptic drugs in the maximal electroshock- and 6 Hz-induced seizures in mice: pharmacodynamic and pharmacokinetic studies. Neuropharmacology. 2019;158:107733. https://doi.org/10.1016/j.neuropharm.2019.107733.
Strauss KA, Puffenberger EG, Huentelman MJ, et al. Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N Engl J Med. 2006;354:1370–7. https://doi.org/10.1056/NEJMoa052773.
Steel D, Symonds J, Zuberi S, et al. Dravet syndrome and its mimics: beyond SCN1A. Epilepsia. 2017;58:1807–16. https://doi.org/10.1111/epi.13889.
Stockler S, Plecko B, Gospe SM Jr, et al. Pyridoxine dependent epilepsy and antiquitin deficiency: clinical and molecular characteristics and recommendations for diagnosis, treatment and follow-up. Mol Genet Metab. 2011;104:48–60. https://doi.org/10.1016/j.ymgme.2011.05.014.
Suls A, Dedeken P, Goffin K, et al. Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain. 2008;131:1831–18-44. https://doi.org/10.1093/brain/awn113.
Switon K, Kotulska K, Janusz-Kaminska A, et al. Molecular neurobiology of mTOR. Neuroscience. 2017;341:112–53. https://doi.org/10.1016/j.neuroscience.2016.11.017.
Tang F, Hartz AMS, Bauer B. Drug-resistant epilepsy: multiple hypotheses, few answers. Front Neurol. 2017;8:301. https://doi.org/10.3389/fneur.2017.00301.
Tate SK, Depondt C, Sisodiya SM, et al. Genetic predictors of the maximum dose patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc Natl Acad Sci U S A. 2005;102:5507–12. https://doi.org/10.1073/pnas.0407346102.
Tishler DM, Weinberg KI, Hinton DR, et al. MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia. 1995;36:1–6. https://doi.org/10.1111/j.1528-1157.1995.tb01657.x.
van Vliet EA, Forte G, Holtman L, et al. Inhibition of mammalian target of rapamycin reduces epileptogenesis and blood-brain barrier leakage but not microglia activation. Epilepsia. 2012;53:1254–63. https://doi.org/10.1111/j.1528-1167.2012.03513.x.
Vazquez SE, D’Giano C, Carpintiero S, et al. Increase 99mTc-SESTAMIBI (MIBI) liver clearance could identified epileptic pharmacoresistant patients. A preliminary study. Annual Meeting of the American Epilepsy Society. Epilepsia. 2004;45:120 (abstract).
Velasco-Parra H, Rodrı́guez L, González C, et al. Polimorfismo C3435T del gen ABCB1 (MDR1) en pacientes con epilepsia refractaria en tres centros de referencia nacional en Colombia. Medicina (Bogotá). 2011;33:249–59. ISSN: 0120-5498.
Wang J, Lin ZJ, Liu L, et al. Epilepsy-associated genes. Seizure. 2017;44:11–20. https://doi.org/10.1016/j.seizure.2016.11.030.
Wong CSM, Yap DYH, Ip P, et al. HLA-B*15:11 status and carbamazepine-induced severe cutaneous adverse drug reactions in HLA-B*15:02 negative Chinese. Int J Dermatol. 2022;61:184–90. https://doi.org/10.1111/ijd.15792.
Yamaori S, Ebisawa J, Okushima Y, et al. Potent inhibition of human cytochrome P450 3A isoforms by cannabidiol: role of phenolic hydroxyl groups in the resorcinol moiety. Life Sci. 2011;88:730–6. https://doi.org/10.1016/j.lfs.2011.02.017.
Zhang B, Wong M. Pentylenetetrazole-induced seizures cause acute but not chronic mTOR pathway activation in rats. Epilepsia. 2012;53:506–11. https://doi.org/10.1111/j.1528-1167.2011.03384.x.
Zhu HJ, Wang JS, Markowitz JS, et al. Characterization of P-glycoprotein inhibition by major cannabinoids from marijuana. J Pharmacol Exp Ther. 2006;317:850–7. https://doi.org/10.1124/jpet.105.098541.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Czornyj, L., Auzmendi, J., Lazarowski, A. (2023). Pharmacogenetics in Epilepsy and Refractory Epilepsy. In: Rocha, L.L., Lazarowski, A., Cavalheiro, E.A. (eds) Pharmacoresistance in Epilepsy. Springer, Cham. https://doi.org/10.1007/978-3-031-36526-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-36526-3_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36525-6
Online ISBN: 978-3-031-36526-3
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)