Skip to main content

Structure and Functions of RNA G-quadruplexes

  • Chapter
  • First Online:
RNA Structure and Function

Part of the book series: RNA Technologies ((RNATECHN,volume 14))

  • 729 Accesses

Abstract

G-quadruplexes (G4s) are four-stranded nucleic acid secondary structures that are formed by the stacking of square planar guanine arrangements and stabilized by favorable cations. Potential G4-forming sequences are distributed in the regulatory regions of the genome and transcriptome. G4s are proposed to modulate various physiological and pathophysiological cellular processes. As such RNA G4s (rG4s) have been implicated in several key processes of gene regulation such as RNA maturation, mRNA translation, and RNA transport. rG4s often impact cellular biology by associating different RNA binding proteins, both of which could act as crucial therapeutic targets in the fight for developing novel therapeutics for the diseases associated with rG4-containing transcripts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama Y, Lyons SM, Fay MM et al (2022) Selective cleavage at CCA ends and anticodon loops of tRNAs by stress-induced RNases. Front Mol Biosci 9:791094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora A, Suess B (2011) An RNA G-quadruplex in the 3’ UTR of the proto-oncogene PIM1 represses translation. RNA Biol 8(5):802–805

    Article  CAS  PubMed  Google Scholar 

  • Asamitsu S, Shioda N (2021) Potential roles of G-quadruplex structures in RNA granules for physiological and pathological phase separation. J Biochem 169(5):527–533

    Article  CAS  PubMed  Google Scholar 

  • Balaratnam S, Basu S (2015) Divalent cation-aided identification of physico-chemical properties of metal ions that stabilize RNA g-quadruplexes. Biopolymers 103(7):376–386

    Article  CAS  PubMed  Google Scholar 

  • Balaratnam S, Hettiarachchilage M, West N et al (2019) A secondary structure within a human piRNA modulates its functionality. Biochimie 157:72–80

    Article  CAS  PubMed  Google Scholar 

  • Bang I (1910) Untersuchugen uber die Guanylsaure. Z Physiol Chem 31:407

    Google Scholar 

  • Beaudoin JD, Perreault JP (2013) Exploring mRNA 3’-UTR G-quadruplexes: evidence of roles in both alternative polyadenylation and mRNA shortening. Nucleic Acids Res 41(11):5898–5911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belotserkovskii BP, Tornaletti S, D’Souza AD et al (2018) R-loop generation during transcription: Formation, processing and cellular outcomes. DNA Repair 71:69–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benhalevy D, Gupta SK, Danan CH (2017) The human CCHC-type zinc finger nucleic acid-binding protein binds G-Rich elements in target mRNA coding sequences and promotes translation. Cell Rep 18(12):2979–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bensaid M, Melko M, Bechara EG et al (2009) FRAXE-associated mental retardation protein (FMR2) is an RNA-binding protein with high affinity for G-quartet RNA forming structure. Nucleic Acids Res 37(4):1269–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya D, Diamond P, Basu S (2015) An independently folding RNA G-quadruplex domain directly recruits the 40S ribosomal subunit. Biochemistry 54(10):1879–1885

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya D, Mirihana Arachchilage G, Basu S (2016) Metal cations in G-quadruplex folding and stability. Front Chem, 4(38)

    Google Scholar 

  • Bonnal S, Schaeffer C, Créancier L et al (2003) A single internal ribosome entry site containing a G quartet RNA structure drives fibroblast growth factor 2 gene expression at four alternative translation initiation codons. J Biol Chem 278(41):39330–39336

    Article  CAS  PubMed  Google Scholar 

  • Booy EP, Meier M, Okun N et al (2012) The RNA helicase RHAU (DHX36) unwinds a G4-quadruplex in human telomerase RNA and promotes the formation of the P1 helix template boundary. Nucleic Acids Res 40(9):4110–4124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bordeleau ME, Cencic R, Lindqvist L et al (2006) RNA-mediated sequestration of the RNA helicase eIF4A by Pateamine A inhibits translation initiation. Chem Biol 13(12):1287–1295

    Article  CAS  PubMed  Google Scholar 

  • Cadoni E, De Paepe L, Manicardi A et al (2021) Beyond small molecules: targeting G-quadruplex structures with oligonucleotides and their analogues. Nucleic Acids Res 49(12):6638–6659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cammas A, Lacroix-Triki M, Pierredon S et al (2016) hnRNP A1-mediated translational regulation of the G quadruplex-containing RON receptor tyrosine kinase mRNA linked to tumor progression. Oncotarget 7(13):16793–16805

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen SB, Hu MH, Liu GC et al (2016) Visualization of NRAS RNA G-quadruplex structures in cells with an engineered fluorogenic hybridization probe. J Am Chem Soc 138(33):10382–10385

    Article  CAS  PubMed  Google Scholar 

  • Chen MC, Tippana R, Demeshkina NA et al (2018a) Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36. Nature 558(7710):465–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XC, Chen SB, Dai J et al (2018b) Tracking the dynamic folding and unfolding of RNA G-quadruplexes in live cells. Ang Chem Int Ed 57(17):4702–4706

    Article  CAS  Google Scholar 

  • Clemson CM, Hutchinson JN, Sara SA et al (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 33(6):717–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conlon EG, Lu L, Sharma A et al (2016) The C9ORF72 GGGGCC expansion forms RNA G-quadruplex inclusions and sequesters hnRNP H to disrupt splicing in ALS brains. eLife 5.

    Google Scholar 

  • Crenshaw E, Leung BP, Kwok CK et al (2015) Amyloid precursor protein translation is regulated by a 3’UTR guanine quadruplex. PLoS ONE 10(11):e0143160

    Article  PubMed  PubMed Central  Google Scholar 

  • Decorsière A, Cayrel A, Vagner S et al (2011) Essential role for the interaction between hnRNP H/F and a G quadruplex in maintaining p53 pre-mRNA 3’-end processing and function during DNA damage. Genes Dev 25(3):220–225

    Article  PubMed  PubMed Central  Google Scholar 

  • Didiot MC, Tian Z, Schaeffer C et al (2008) The G-quartet containing FMRP binding site in FMR1 mRNA is a potent exonic splicing enhancer. Nucleic Acids Res 36(15):4902–4912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emara MM, Ivanov P, Hickman T et al (2010) Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J Biol Chem 285(14):10959–10968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fay MM, Anderson PJ, Ivanov P (2017a) ALS/FTD-Associated C9ORF72 repeat rna promotes phase transitions in vitro and in cells. Cell Rep 21(12):3573–3584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fay MM, Lyons SM, Ivanov P (2017b) RNA G-quadruplexes in biology: principles and molecular Mmchanisms. J Mol Biol 429(14):2127–2147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer JW, Busa VF, Shao Y et al (2020) Structure-mediated RNA decay by UPF1 and G3BP1. Mol Cell 78(1):70-84.e76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gellert M, Lipsett MN, Davies DR (1962) Helix formation by guanylic acid. Proc Natl Acad Sci U S A 48(12):2013–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgakopoulos-Soares I, Parada GE, Hemberg M (2022) Secondary structures in RNA synthesis, splicing and translation. Comp Str Biotech J 20:2871–2884

    CAS  Google Scholar 

  • Goering R, Hudish LI, Guzman BB et al (2020) FMRP promotes RNA localization to neuronal projections through interactions between its RGG domain and G-quadruplex RNA sequences. eLife 9, e52621

    Google Scholar 

  • Gomez D, Lemarteleur T, Lacroix L et al (2004) Telomerase downregulation induced by the G-quadruplex ligand 12459 in A549 cells is mediated by hTERT RNA alternative splicing. Nucleic Acids Res 32(1):371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halder K, Largy E, Benzler M et al (2011) Efficient suppression of gene expression by targeting 5′-UTR-based RNA quadruplexes with bisquinolinium compounds. ChemBioChem 12(11):1663–1668

    Article  CAS  PubMed  Google Scholar 

  • Imperatore JA, Then ML, McDougal KB et al (2020) Characterization of a G-quadruplexsStructure in pre-miRNA-1229 and in its Alzheimer's Disease-associated variant rs2291418: implications for miRNA-1229 maturation. Int J Mol Sci 21(3)

    Google Scholar 

  • Ishiguro A, Lu J, Ozawa D et al (2021) ALS-linked FUS mutations dysregulate G-quadruplex-dependent liquid-to-liquid phase separation and liquid-to-solid transition. J Biol Chem 297(5)

    Google Scholar 

  • Ivanov P, O’Day E, Emara MM, Wagner, et al (2014) G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. Proc Natl Acad Sci U S A 111(51):18201–18206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov P, Kedersha N Anderson P (2019) Stress granules and processing bodies in translational control. Cold Spring Harb Perspect Biol 11(5).

    Google Scholar 

  • Katsuda Y, Sato S, Asano L et al (2016) A small molecule that represses translation of G-quadruplex-containing mRNA. J Am Chem Soc 138(29):9037–9040

    Article  CAS  PubMed  Google Scholar 

  • Kenny PJ, Kim M, Skariah G et al (2019) The FMRP–MOV10 complex: a translational regulatory switch modulated by G-quadruplexes. Nucleic Acids Res 48(2):862–878

    PubMed Central  Google Scholar 

  • Kharel P, Balaratnam S, Beals N et al (2020a) The role of RNA G-quadruplexes in human diseases and therapeutic strategies. Wires RNA 11(1):e1568

    Article  CAS  PubMed  Google Scholar 

  • Kharel P, Becker G, Tsvetkov V et al (2020b) Properties and biological impact of RNA G-quadruplexes: from order to turmoil and back. Nucleic Acids Res 48(22):12534–12555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kharel P, Fay M, Manasova EV et al (2023) Stress promotes RNA G-quadruplex folding in human cells. Nature Commun 14:205

    Article  CAS  Google Scholar 

  • Khateb S, Weisman-Shomer P, Hershco-Shani I et al (2007) The tetraplex (CGG)n destabilizing proteins hnRNP A2 and CBF-A enhance the in vivo translation of fragile X premutation mRNA. Nucleic Acids Res 35(17):5775–5788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikin O, Zappala Z, D’Antonio L et al (2008) GRSDB2 and GRS_UTRdb: databases of quadruplex forming G-rich sequences in pre-mRNAs and mRNAs. Nucleic Acids Res 36:D141-148

    Article  CAS  PubMed  Google Scholar 

  • Koh WS, Porter JR, Batchelor E (2019) Tuning of mRNA stability through altering 3′-UTR sequences generates distinct output expression in a synthetic circuit driven by p53 oscillations. Sci Rep 9(1):5976

    Article  PubMed  PubMed Central  Google Scholar 

  • Koukouraki P, Doxakis E (2016) Constitutive translation of human α-synuclein is mediated by the 5’-untranslated region. Open Biol 6(4):160022

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari S, Bugaut A, Huppert JL et al (2007) An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat Chem Biol 3(4):218–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari S, Bugaut A, Balasubramanian S (2008) Position and stability are determining factors for translation repression by an RNA G-quadruplex-forming sequence within the 5′ UTR of the NRAS proto-oncogene. Biochemistry 47(48):12664–12669

    Article  CAS  PubMed  Google Scholar 

  • Kwok CK, Sahakyan AB, Balasubramanian S (2016) Structural analysis using SHALiPE to reveal RNA G-quadruplex formation in human precursor microRNA. Angew Chem Int Ed Engl 55(31):8958–8961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lago S, Tosoni E, Nadai M, Palumbo M et al (2017) The cellular protein nucleolin preferentially binds long-looped G-quadruplex nucleic acids. Biochim Biophys Acta Gen Subj, 1861(5 Pt B):1371–1381

    Google Scholar 

  • Lightfoot HL, Hagen T, Tatum NJ et al (2019) The diverse structural landscape of quadruplexes. FEBS Lett 593(16):2083–2102

    Article  CAS  PubMed  Google Scholar 

  • Loya CM, Van Vactor D, Fulga TA (2010) Understanding neuronal connectivity through the post-transcriptional toolkit. Genes Dev 24(7):625–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyons SM, Achorn C, Kedersha NL et al (2016) YB-1 regulates tiRNA-induced Stress Granule formation but not translational repression. Nucleic Acids Res 44(14):6949–6960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyons SM, Gudanis D, Coyne SM et al (2017) Identification of functional tetramolecular RNA G-quadruplexes derived from transfer RNAs. Nature Commun 8(1):1127

    Article  Google Scholar 

  • Lyons SM, Kharel P, Akiyama Y et al (2020) eIF4G has intrinsic G-quadruplex binding activity that is required for tiRNA function. Nucleic Acids Res 48(11):6223–6233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcel V, Tran PL, Sagne C et al (2011) G-quadruplex structures in TP53 intron 3: role in alternative splicing and in production of p53 mRNA isoforms. Carcinogenesis 32(3):271–278

    Article  CAS  PubMed  Google Scholar 

  • McRae EKS, Booy EP, Padilla-Meier GP et al (2017) On characterizing the interactions between proteins and guanine quadruplex structures of nucleic acids. J Nucleic Acids 9675348

    Google Scholar 

  • Mei Y, Deng Z, Vladimirova O et al (2021) TERRA G-quadruplex RNA interaction with TRF2 GAR domain is required for telomere integrity. Sci Rep 11(1):3509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melko M, Douguet D, Bensaid M et al (2011) Functional characterization of the AFF (AF4/FMR2) family of RNA-binding proteins: insights into the molecular pathology of FRAXE intellectual disability. Human Mol Genet 20(10):1873–1885

    Article  CAS  Google Scholar 

  • Mestre-Fos S, Penev PI, Suttapitugsakul S et al (2019) G-quadruplexes in human ribosomal RNA. J Mol Biol 431(10):1940–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miglietta G, Cogoi S, Marinello J et al (2017) RNA G-quadruplexes in Kirsten Ras (KRAS) oncogene as targets for small molecules inhibiting translation. J Med Chem 60(23):9448–9461

    Article  CAS  PubMed  Google Scholar 

  • Mirihana Arachchilage G, Dassanayake Arosha C, Basu S (2015) A potassium ion-dependent RNA structural switch regulates human pre-miRNA 92b maturation. Chem Biol 22(2):262–272

    Article  CAS  PubMed  Google Scholar 

  • Mirihana Arachchilage G, Kharel P, Reid J et al (2018) Targeting of G-quadruplex harboring pre-miRNA 92b by LNA rescues PTEN expression in NSCL cancer cells. ACS Chem Biol 13(4):909–914

    Article  CAS  PubMed  Google Scholar 

  • Mirihana Arachchilage G, Hetti Arachchilage M, Venkataraman A et al (2019) Stable G-quadruplex enabling sequences are selected against by the context-dependent codon bias. Gene 696:149–161

    Article  CAS  PubMed  Google Scholar 

  • Mori K, Lammich S, Mackenzie IR et al (2013) hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol 125(3):413–423

    Article  CAS  PubMed  Google Scholar 

  • Morris MJ, Basu S (2009) An unusually stable G-quadruplex within the 5’-UTR of the MT3 matrix metalloproteinase mRNA represses translation in eukaryotic cells. Biochemistry 48(23):5313–5319

    Article  CAS  PubMed  Google Scholar 

  • Morris MJ, Negishi Y, Pazsint C et al (2010) An RNA G-quadruplex is essential for cap-independent translation initiation in human VEGF IRES. J Am Chem Soc 132(50):17831–17839

    Article  CAS  PubMed  Google Scholar 

  • Newman M, Sfaxi R, Saha A et al (2017) The G-quadruplex-specific RNA helicase DHX36 regulates p53 pre-mRNA 3′-end processing following UV-induced DNA damage. J Mol Biol 429(21):3121–3131

    Article  CAS  PubMed  Google Scholar 

  • O’Day E, Le MTN, Imai S et al (2015) An RNA-binding protein, Lin28, recognizes and remodels G-quartets in the microRNAs (miRNAs) and mRNAs it regulates. J Biol Chem 290(29):17909–17922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oyaghire O, SN, Cherubim CJ, Telmer CA, et al (2016) RNA G-quadruplex invasion and translation inhibition by antisense γ-peptide nucleic acid oligomers. Biochemistry 55(13):1977–1988

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Agarwala P, Jayaraj GG et al (2015) The RNA stem–loop to G-quadruplex equilibrium controls mature microRNA production inside the cell. Biochemistry 54(48):7067–7078

    Article  CAS  PubMed  Google Scholar 

  • Pietras Z, Wojcik MA, Borowski LS et al (2018) Dedicated surveillance mechanism controls G-quadruplex forming non-coding RNAs in human mitochondria. Nat Commun 9(1):2558

    Article  PubMed  PubMed Central  Google Scholar 

  • Puig LE, Londoño-Vallejo A (2020) A guide to computational methods for G-quadruplex prediction. Nucleic Acids Res 48(1):1–15

    Article  Google Scholar 

  • Ribeiro de Almeida C, Dhir S, Dhir A (2018) RNA helicase DDX1 converts RNA G-quadruplex structures into R-loops to promote IgH class switch recombination. Mol Cell 70(4):650-662.e658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocca R, Talarico C, Moraca F et al (2017) Molecular recognition of a carboxy pyridostatin toward G-quadruplex structures: Why does it prefer RNA? Chem Biol Drug Des 90(5):919–925

    Article  CAS  PubMed  Google Scholar 

  • Rouleau S, Glouzon JS, Brumwell A et al (2017) 3’ UTR G-quadruplexes regulate miRNA binding. RNA 23(8):1172–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo A, Siciliano G, Catillo M et al (2010) hnRNP H1 and intronic G runs in the splicing control of the human rpL3 gene. Biochim Biophys Acta 1799(5):419–428

    Article  CAS  PubMed  Google Scholar 

  • Sabharwal NC, Savikhin V, Turek-Herman JR et al (2014) N-methylmesoporphyrin IX fluorescence as a reporter of strand orientation in guanine quadruplexes. FEBS J 281(7):1726–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos T, Salgado GF, Cabrita EJ et al (2021). G-Quadruplexes and their ligands: biophysical methods to unravel G-quadruplex/ligand interactions. Pharmaceuticals (Basel) 14(8)

    Google Scholar 

  • Schmidt T, Dabrowska A, Waldron JA et al (2022). Purine-rich RNA sequences in the 5’UTR site-specifically regulate eIF4A1-unwinding through eIF4A1-multimerisation to facilitate translation. bioRxiv 2022.2008.2008.503179.

    Google Scholar 

  • Schuster BS, Reed EH, Parthasarathy R et al (2018) Controllable protein phase separation and modular recruitment to form responsive membraneless organelles. Nat Commun 9(1):2985

    Article  PubMed  PubMed Central  Google Scholar 

  • Sen D, Gilbert W (1988) Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334(6180):364–366

    Article  CAS  PubMed  Google Scholar 

  • Shrestha P, Xiao S, Dhakal S et al (2014) Nascent RNA transcripts facilitate the formation of G-quadruplexes. Nucleic Acids Res 42:7236–7246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel DA, Le Tonqueze O, Biton A et al (2021). Massively parallel analysis of human 3′ UTRs reveals that AU-rich element length and registration predict mRNA destabilization. G3 Genes|Genomes|Genetics 12(1)

    Google Scholar 

  • Simko EAJ, Liu H, Zhang T et al (2020) G-quadruplexes offer a conserved structural motif for NONO recruitment to NEAT1 architectural lncRNA. Nucleic Acids Res 48(13):7421–7438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simone R, Balendra R, Moens TG et al (2018) G-quadruplex-binding small molecules ameliorate C9orf72 FTD/ALS pathology in vitro and in vivo. EMBO Mol Med 10(1):22–31

    Article  CAS  PubMed  Google Scholar 

  • Skourti-Stathaki K, Proudfoot NJ, Gromak N (2011) Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell 42(6):794–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian M, Rage F, Tabet R et al (2011) G–quadruplex RNA structure as a signal for neurite mRNA targeting. EMBO Rep 12(7):697–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thandapani P, Song J, Gandin V et al (2015) Aven recognition of RNA G-quadruplexes regulates translation of the mixed lineage leukemia protooncogenes. eLife 4, e06234

    Google Scholar 

  • Tippana R, Chen MC, Demeshkina NA et al (2019) RNA G-quadruplex is resolved by repetitive and ATP-dependent mechanism of DHX36. Nat Commun 10(1):1855

    Google Scholar 

  • Vo T, Brownmiller T, Hall K et al (2022) HNRNPH1 destabilizes the G-quadruplex structures formed by G-rich RNA sequences that regulate the alternative splicing of an oncogenic fusion transcript. Nucleic Acids Res 50(11):6474–6496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liu J, Huang BO et al (2015) Mechanism of alternative splicing and its regulation. Biomed Rep 3(2):152–158

    Article  CAS  PubMed  Google Scholar 

  • Westmark CJ, MalterJS, (2007) FMRP mediates mGluR5-dependent translation of amyloid precursor protein. PLoS Biol 5(3):e52

    Article  PubMed  PubMed Central  Google Scholar 

  • Winnerdy FR, & Phan AT (2020) Quadruplex structure and diversity. Ann Rep Med Chem (Vol. 54, pp. 45–73). Academic Press

    Google Scholar 

  • Wolfe AL, Singh K, Zhong Y et al (2014) RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature 513(7516):65–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolozin B, Ivanov P (2019) Stress granules and neurodegeneration. Nat Rev Neurosci 20(11):649–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao S, Zhang JY, Zheng KW et al (2013) Bioinformatic analysis reveals an evolutional selection for DNA:RNA hybrid G-quadruplex structures as putative transcription regulatory elements in warm-blooded animals. Nucleic Acids Res 41(22):10379–10390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki S, Ivanov P, Hu GF et al (2009) Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 185(1):35–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Yu H, Duncan S et al (2022) RNA G-quadruplex structure contributes to cold adaptation in plants. Nat Commun 13(1):6224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaccaria F, Fonseca Guerra C (2018) RNA versus DNA G-quadruplex: the origin of increased stability. Chemistry 24(61):16315–16322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DH, Fujimoto T, Saxena S et al (2010) Monomorphic RNA G-quadruplex and polymorphic DNA G-quadruplex structures responding to cellular environmental factors. Biochemistry 49(21):4554–4563

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yang M, Duncan S et al (2019b) G-quadruplex structures trigger RNA phase separation. Nucleic Acids Res 47(22):11746–11754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Yu L, Ye S et al (2019a) MOV10L1 binds RNA G-quadruplex in a structure-specific manner and resolves it more efficiently than MOV10. iScience 17:36–48.

    Google Scholar 

  • Zheng KW, Wu RY, He YD et al (2014) A competitive formation of DNA:RNA hybrid G-quadruplex is responsible to the mitochondrial transcription termination at the DNA replication priming site. Nucleic Acids Res 42(16):10832–10844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng AJL, Thermou A, Guixens P et al (2022) The different activities of RNA G-quadruplex structures are controlled by flanking sequences. Life Sci All 5(2):e202101232

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kharel, P., Ivanov, P. (2023). Structure and Functions of RNA G-quadruplexes. In: Barciszewski, J. (eds) RNA Structure and Function. RNA Technologies, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-031-36390-0_9

Download citation

Publish with us

Policies and ethics