Skip to main content

Characterization and Toxicology of Microplastics in Soils, Water and Air

  • Chapter
  • First Online:
Microplastic Occurrence, Fate, Impact, and Remediation

Abstract

Pollution of air, water, and soil by microplastics is a recent issue of health concern, yet methods for microplactic characterisation are actually limited. Recent reseach shows that microplastics in soil, water, and air all have their own unique sampling, detection, characterization and behavior. Here we review microplastics in soils, waters, drinking water, and air, with focus on microplastic characterization, types of microplastics, sampling methods, extraction methods, environmental implications, toxicology and human exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 17 November 2023

    A correction has been published.

References

  • Abbasi S, Keshavarzi B, Moore F, Turner A, Kelly FJ, Dominguez AO, Jaafarzadeh N (2019) Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran. Environ Pollut 244:153–164. https://doi.org/10.1016/j.envpol.2018.10.039

    Article  CAS  Google Scholar 

  • Abeynayaka A et al (2020) Rapid sampling of suspended and floating microplastics in challenging riverine and coastal water environments in Japan. Water 12(7):1903

    Google Scholar 

  • Akdogan Z, Guven B (2019) Microplastics in the environment: a critical review of current understanding and identification of future research needs. Environ Pollut 254:113011. https://doi.org/10.1016/j.envpol.2019.113011

    Article  CAS  Google Scholar 

  • Akhbarizadeh R, Dobaradaran S, Torkmahalleh MA, Saeedi R, Aibaghi R, Ghasemi FF (2021) Suspended fine particulate matter (PM2. 5), microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: their possible relationships and health implications. Environ Res 192:110339

    CAS  Google Scholar 

  • Allen S et al (2019) Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat Geosci 12(5):339–344. https://doi.org/10.1038/s41561-019-0335-5

    Article  CAS  Google Scholar 

  • Álvarez-Lopeztello J, Robles C, del Castillo RF (2021) Microplastic pollution in neotropical rainforest, savanna, pine plantations, and pasture soils in lowland areas of Oaxaca, Mexico: preliminary results. Ecol Indic 121:107084

    Google Scholar 

  • Ambrosini R, Azzoni RS, Pittino F, Diolaiuti G, Franzetti A, Parolini M (2019) First evidence of microplastic contamination in the supraglacial debris of an alpine glacier. Environ Pollut 253:297–301. https://doi.org/10.1016/j.envpol.2019.07.005

    Article  CAS  Google Scholar 

  • Anjana K, Hinduja M, Sujitha K, Dharani G (2020) Review on plastic wastes in marine environment–biodegradation and biotechnological solutions. Mar Pollut Bull 150:110733

    Google Scholar 

  • Araujo CF, Nolasco MM, Ribeiro AM, Ribeiro-Claro PJ (2018) Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Res 142:426–440

    CAS  Google Scholar 

  • Asrin NRN, Dipareza A (2019) Microplastics in ambient air (case study: Urip Sumoharjo street and Mayjend Sungkono street of Surabaya City, Indonesia). IAETSD J Adv Res Appl Sci 14 (2):654–657

    Google Scholar 

  • Atugoda T et al (2021) Interactions between microplastics, pharmaceuticals and personal care products: implications for vector transport. Environ Int 149:106367

    CAS  Google Scholar 

  • Bakir A, Rowland SJ, Thompson RC (2012) Competitive sorption of persistent organic pollutants onto microplastics in the marine environment. Mar Pollut Bull 64(12):2782–2789. https://doi.org/10.1016/j.marpolbul.2012.09.010

    Article  CAS  Google Scholar 

  • Barboza LGA, Vieira LR, Branco V, Carvalho C, Guilhermino L (2018) Microplastics increase mercury bioconcentration in gills and bioaccumulation in the liver, and cause oxidative stress and damage in Dicentrarchus labrax juveniles. Sci Rep 8(1):1–9

    Google Scholar 

  • Barnes DK, Walters A, Gonçalves L (2010) Macroplastics at sea around Antarctica. Mar Environ Res 70(2):250–252

    CAS  Google Scholar 

  • Bergmann M, Mutzel S, Primpke S, Tekman MB, Trachsel J, Gerdts G (2019) White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci Adv 5(8):eaax1157. https://doi.org/10.1126/sciadv.aax1157

    Article  CAS  Google Scholar 

  • Blasing M, Amelung W (2018) Plastics in soil: analytical methods and possible sources. Sci Total Environ 612:422–435. https://doi.org/10.1016/j.scitotenv.2017.08.086

    Article  CAS  Google Scholar 

  • Bradney L et al (2019) Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environ Int 131:104937

    CAS  Google Scholar 

  • Büks F, Kaupenjohann M (2020) Global concentrations of microplastics in soils – a review. Soil 6(2):649–662. https://doi.org/10.5194/soil-6-649-2020

    Article  Google Scholar 

  • Cai L, Wang J, Peng J, Tan Z, Zhan Z, Tan X, Chen Q (2017) Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: preliminary research and first evidence. Environ Sci Pollut Res Int 24(32):24928–24935. https://doi.org/10.1007/s11356-017-0116-x

    Article  Google Scholar 

  • Calderon EA, Hansen P, Rodríguez A, Blettler M, Syberg K, Khan FR (2019) Microplastics in the digestive tracts of four fish species from the Ciénaga Grande de Santa Marta Estuary in Colombia. Water Air Soil Pollut 230(11):1–9

    CAS  Google Scholar 

  • Campanale C, Savino I, Pojar I, Massarelli C, Uricchio VF (2020) A practical overview of methodologies for sampling and analysis of microplastics in riverine environments. Sustainability 12(17):6755

    CAS  Google Scholar 

  • Chen G, Feng Q, Wang J (2020a) Mini-review of microplastics in the atmosphere and their risks to humans. Sci Total Environ 703:135504

    CAS  Google Scholar 

  • Chen G, Fu Z, Yang H, Wang J (2020b) An overview of analytical methods for detecting microplastics in the atmosphere. TrAC Trends Anal Chem 130:115981

    CAS  Google Scholar 

  • Cheng Y et al (2021) The effects of high-density polyethylene and polypropylene microplastics on the soil and earthworm Metaphire guillelmi gut microbiota. Chemosphere 267:129219. https://doi.org/10.1016/j.chemosphere.2020.129219

    Article  CAS  Google Scholar 

  • Chia RW, Lee J-Y, Kim H, Jang J (2021) Microplastic pollution in soil and groundwater: a review. Environ Chem Lett 19(6):4211–4224

    CAS  Google Scholar 

  • Chico-Ortiz N, Mahu E, Crane R, Gordon C, Marchant R (2020) Microplastics in Ghanaian coastal lagoon sediments: their occurrence and spatial distribution. Reg Stud Mar Sci 40:101509

    Google Scholar 

  • Choi YR, Kim Y-N, Yoon J-H, Dickinson N, Kim K-H (2021) Plastic contamination of forest, urban, and agricultural soils: a case study of Yeoju City in the Republic of Korea. J Soils Sediments 21(5):1962–1973

    CAS  Google Scholar 

  • Choi H et al (2022) Comparison of Microplastic Characteristics in the Indoor and Outdoor Air of Urban Areas of South Korea. Water Air Soil Pollut 233(5):1–10

    Google Scholar 

  • Chubarenko I, Bagaev A, Zobkov M, Esiukova E (2016) On some physical and dynamical properties of microplastic particles in marine environment. Mar Pollut Bull 108(1–2):105–112

    CAS  Google Scholar 

  • Claessens M, Van Cauwenberghe L, Vandegehuchte MB, Janssen CR (2013) New techniques for the detection of microplastics in sediments and field collected organisms. Mar Pollut Bull 70(1–2):227–233. https://doi.org/10.1016/j.marpolbul.2013.03.009

    Article  CAS  Google Scholar 

  • Corradini F, Casado F, Leiva V, Huerta-Lwanga E, Geissen V (2021) Microplastics occurrence and frequency in soils under different land uses on a regional scale. Sci Total Environ 752:141917

    CAS  Google Scholar 

  • Crawford CB, Quinn B (2017) Microplastic collection techniques. In: Crawford CB, Quinn B (eds). Elsevier, Microplastic pollutants, pp 179–202. https://doi.org/10.1016/b978-0-12-809406-8.00008-6

    Chapter  Google Scholar 

  • Crichton EM, Noël M, Gies EA, Ross PS (2017) A novel, density-independent and FTIR-compatible approach for the rapid extraction of microplastics from aquatic sediments. Anal Methods 9(9):1419–1428. https://doi.org/10.1039/c6ay02733d

    Article  CAS  Google Scholar 

  • Crossman J, Hurley RR, Futter M, Nizzetto L (2020) Transfer and transport of microplastics from biosolids to agricultural soils and the wider environment. Sci Total Environ 724:138334

    CAS  Google Scholar 

  • D’Angelo S, Meccariello R (2021) Microplastics: a threat for male fertility. Int J Environ Res Public Health 18(5):2392. https://doi.org/10.3390/ijerph18052392

    Article  CAS  Google Scholar 

  • Dai Z et al (2018) Occurrence of microplastics in the water column and sediment in an inland sea affected by intensive anthropogenic activities. Environ Pollut 242(Pt B):1557–1565. https://doi.org/10.1016/j.envpol.2018.07.131

    Article  CAS  Google Scholar 

  • de Souza Machado AA, Kloas W, Zarfl C, Hempel S, Rillig MC (2018) Microplastics as an emerging threat to terrestrial ecosystems. Glob Chang Biol 24(4):1405–1416. https://doi.org/10.1111/gcb.14020

    Article  Google Scholar 

  • Dehghani S, Moore F, Akhbarizadeh R (2017) Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environ Sci Pollut Res Int 24(25):20360–20371. https://doi.org/10.1007/s11356-017-9674-1

    Article  CAS  Google Scholar 

  • Ding J et al (2019) Detection of microplastics in local marine organisms using a multi-technology system. Anal Methods 11(1):78–87

    CAS  Google Scholar 

  • Dris R, Gasperi J, Rocher V, Saad M, Renault N, Tassin B (2015) Microplastic contamination in an urban area: a case study in Greater Paris. Environ Chem 12(5):592–599

    CAS  Google Scholar 

  • Dris R, Gasperi J, Saad M, Mirande C, Tassin B (2016) Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? Mar Pollut Bull 104(1–2):290–293. https://doi.org/10.1016/j.marpolbul.2016.01.006

    Article  CAS  Google Scholar 

  • Dris R, Gasperi J, Mirande C, Mandin C, Guerrouache M, Langlois V, Tassin B (2017) A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ Pollut 221:453–458. https://doi.org/10.1016/j.envpol.2016.12.013

    Article  CAS  Google Scholar 

  • Dris R, Gasperi J, Rocher V, Tassin B (2018) Synthetic and non-synthetic anthropogenic fibers in a river under the impact of Paris Megacity: sampling methodological aspects and flux estimations. Sci Total Environ 618:157–164. https://doi.org/10.1016/j.scitotenv.2017.11.009

    Article  CAS  Google Scholar 

  • Dubaish F, Liebezeit G (2013) Suspended microplastics and black carbon particles in the Jade system, southern North Sea. Water Air Soil Pollut 224(2):1–8

    CAS  Google Scholar 

  • Dumichen E, Barthel AK, Braun U, Bannick CG, Brand K, Jekel M, Senz R (2015) Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Res 85:451–457. https://doi.org/10.1016/j.watres.2015.09.002

    Article  CAS  Google Scholar 

  • Dumichen E, Eisentraut P, Bannick CG, Barthel AK, Senz R, Braun U (2017) Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere 174:572–584. https://doi.org/10.1016/j.chemosphere.2017.02.010

    Article  CAS  Google Scholar 

  • Duran I, Beiras R (2017) Acute water quality criteria for polycyclic aromatic hydrocarbons, pesticides, plastic additives, and 4-Nonylphenol in seawater. Environ Pollut 224:384–391. https://doi.org/10.1016/j.envpol.2017.02.018

    Article  CAS  Google Scholar 

  • Dyachenko A, Mitchell J, Arsem N (2017) Extraction and identification of microplastic particles from secondary wastewater treatment plant (WWTP) effluent. Anal Methods 9(9):1412–1418

    CAS  Google Scholar 

  • Edson EC, Patterson MR (2015) MantaRay: a novel autonomous sampling instrument for in situ measurements of environmental microplastic particle concentrations. In: OCEANS 2015-MTS/IEEE Washington. IEEE, pp 1–6

    Google Scholar 

  • Enyoh CE, Verla AW, Verla EN, Ibe FC, Amaobi CE (2019) Airborne microplastics: a review study on method for analysis, occurrence, movement and risks. Environ Monit Assess 191(11):668. https://doi.org/10.1007/s10661-019-7842-0

    Article  CAS  Google Scholar 

  • Eriksen M et al (2014) Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One 9(12):e111913

    Google Scholar 

  • Evereklioglu C, Er H, Türköz Y, Çekmen M (2002) Serum levels of TNF-α, sIL-2R, IL-6, and IL-8 are increased and associated with elevated lipid peroxidation in patients with Behçet's disease. Mediat Inflamm 11(2):87–93

    CAS  Google Scholar 

  • Fabbri D (2001) Use of pyrolysis-gas chromatography/mass spectrometry to study environmental pollution caused by synthetic polymers: a case study: the Ravenna Lagoon. J Anal Appl Pyrolysis 58:361–370

    Google Scholar 

  • Fang M et al (2022) Microplastic ingestion from atmospheric deposition during dining/drinking activities. J Hazard Mater 432:128674

    CAS  Google Scholar 

  • Finnegan AMD, Süsserott R, Koh L-H, Teo W-B, Gabbott SE, Gouramanis C (2022) First comparison of sampler surface areas for atmospheric microfibre deposition. Environ Monit Assess 194(8):1–7

    Google Scholar 

  • Fischer M, Scholz-Bottcher BM (2017) Simultaneous trace identification and quantification of common types of microplastics in environmental samples by pyrolysis-gas chromatography-mass spectrometry. Environ Sci Technol 51(9):5052–5060. https://doi.org/10.1021/acs.est.6b06362

    Article  CAS  Google Scholar 

  • Fischer EK, Paglialonga L, Czech E, Tamminga M (2016) Microplastic pollution in lakes and lake shoreline sediments–a case study on Lake Bolsena and Lake Chiusi (central Italy). Environ Pollut 213:648–657

    CAS  Google Scholar 

  • Fu D, Chen CM, Qi H, Fan Z, Wang Z, Peng L, Li B (2020) Occurrences and distribution of microplastic pollution and the control measures in China. Mar Pollut Bull 153:110963. https://doi.org/10.1016/j.marpolbul.2020.110963

    Article  CAS  Google Scholar 

  • Galloway T et al (2020) Science-based solutions to plastic pollution. One Earth 2(1):5–7

    Google Scholar 

  • Garcés-Ordóñez O, Castillo-Olaya VA, Granados-Briceño AF, García LMB, Díaz LFE (2019) Marine litter and microplastic pollution on mangrove soils of the Ciénaga Grande de Santa Marta, Colombian Caribbean. Mar Pollut Bull 145:455–462

    Google Scholar 

  • Garcés-Ordóñez O et al (2022) Microplastic pollution in water, sediments and commercial fish species from Ciénaga Grande de Santa Marta lagoon complex, Colombian Caribbean. Sci Total Environ 829:154643. https://doi.org/10.1016/j.scitotenv.2022.154643

    Article  CAS  Google Scholar 

  • Gewert B, Plassmann MM, MacLeod M (2015) Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci Process Impacts 17(9):1513–1521. https://doi.org/10.1039/c5em00207a

    Article  CAS  Google Scholar 

  • Graham ER, Thompson JT (2009) Deposit- and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. J Exp Mar Biol Ecol 368(1):22–29. https://doi.org/10.1016/j.jembe.2008.09.007

    Article  Google Scholar 

  • Gündogdu S et al (2022) The impact of nano/micro-plastics toxicity on seafood quality and human health: facts and gaps. Crit Rev Food Sci Nutr:1–19

    Google Scholar 

  • Guo JJ et al (2020) Source, migration and toxicology of microplastics in soil. Environ Int 137:105263. https://doi.org/10.1016/j.envint.2019.105263

    Article  CAS  Google Scholar 

  • Habib RZ, Thiemann T, Al Kendi R (2020) Microplastics and wastewater treatment plants – a review. J Water Resour Prot 12(01):1

    CAS  Google Scholar 

  • Hamm T, Lorenz C, Piehl S (2018) Microplastics in aquatic systems–monitoring methods and biological consequences. In: YOUMARES 8–oceans across boundaries: learning from each other. Springer, Cham, pp 179–195

    Google Scholar 

  • Hartmann NB et al (2017) Microplastics as vectors for environmental contaminants: Exploring sorption, desorption, and transfer to biota. Integr Environ Assess Manag 13(3):488–493

    Google Scholar 

  • Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M (2012) Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 46(6):3060–3075

    CAS  Google Scholar 

  • Hodson ME, Duffus-Hodson CA, Clark A, Prendergast-Miller MT, Thorpe KL (2017) Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environ Sci Technol 51(8):4714–4721. https://doi.org/10.1021/acs.est.7b00635

    Article  CAS  Google Scholar 

  • Huang X, Chen Y, Meng Y, Liu G, Yang M (2022) Are we ignoring the role of urban forests in intercepting atmospheric microplastics? J Hazard Mater 436:129096

    CAS  Google Scholar 

  • Huang Z, Hu B, Wang H (2023) Analytical methods for microplastics in the environment: a review. Environ Chem Lett 21:383–401. https://doi.org/10.1007/s10311-022-01525-7

    Article  CAS  Google Scholar 

  • Hurley RR, Nizzetto L (2018) Fate and occurrence of micro(nano)plastics in soils: knowledge gaps and possible risks. Curr Opin Environ Sci Health 1:16–11. https://doi.org/10.1016/j.coesh.2017.10.006

    Article  Google Scholar 

  • Imhof HK, Schmid J, Niessner R, Ivleva NP, Laforsch C (2012) A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnol Oceanogr Methods 10(7):524–537

    CAS  Google Scholar 

  • Jabeen K, Li B, Chen Q, Su L, Wu C, Hollert H, Shi H (2018) Effects of virgin microplastics on goldfish (Carassius auratus). Chemosphere 213:323–332. https://doi.org/10.1016/j.chemosphere.2018.09.031

    Article  CAS  Google Scholar 

  • Jang M, Shim WJ, Cho Y, Han GM, Song YK, Hong SH (2020) A close relationship between microplastic contamination and coastal area use pattern. Water Res 171:115400. https://doi.org/10.1016/j.watres.2019.115400

    Article  CAS  Google Scholar 

  • Jiang XJ, Liu W, Wang E, Zhou T, Xin P (2017) Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, northwestern China. Soil Tillage Res 166:100–107. https://doi.org/10.1016/j.still.2016.10.011

    Article  Google Scholar 

  • Jiang Y, Yang F, Kazmi SSUH, Zhao Y, Chen M, Wang J (2022) A review of microplastic pollution in seawater, sediments and organisms of the Chinese coastal and marginal seas. Chemosphere 286:131677

    CAS  Google Scholar 

  • Junhao C, Xining Z, Xiaodong G, Li Z, Qi H, Siddique KHM (2021) Extraction and identification methods of microplastics and nanoplastics in agricultural soil: a review. J Environ Manag 294:112997. https://doi.org/10.1016/j.jenvman.2021.112997

    Article  CAS  Google Scholar 

  • Kalogerakis N, Karkanorachaki K, Kalogerakis GC, Triantafyllidi EI, Gotsis AD, Partsinevelos P, Fava F (2017) Microplastics generation: onset of fragmentation of polyethylene films in marine environment mesocosms. Front Mar Sci 4:84

    Google Scholar 

  • Käppler A, Fischer D, Oberbeckmann S, Schernewski G, Labrenz M, Eichhorn K-J, Voit B (2016) Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal Bioanal Chem 408(29):8377–8391

    Google Scholar 

  • Käppler A et al (2018) Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments. Anal Bioanal Chem 410(21):5313–5327

    Google Scholar 

  • Karlsson TM, Kärrman A, Rotander A, Hassellöv M (2020) Comparison between manta trawl and in situ pump filtration methods, and guidance for visual identification of microplastics in surface waters. Environ Sci Pollut Res 27(5):5559–5571

    Google Scholar 

  • Katsumi N, Kusube T, Nagao S, Okochi H (2021) Accumulation of microcapsules derived from coated fertilizer in paddy fields. Chemosphere 267:129185

    CAS  Google Scholar 

  • Kaya AT, Yurtsever M, Bayraktar SÇ (2018) Ubiquitous exposure to microfiber pollution in the air. Eur Phys J Plus 133(11):488

    Google Scholar 

  • Kershaw P (2015) Sources, fate and effects of microplastics in the marine environment: a global assessment. International Maritime Organization. International Maritime Organization 4 Albert Embankment, London SE1 7SR

    Google Scholar 

  • Kim H, Lee J-Y (2020) Emerging concerns about microplastic pollution on groundwater in South Korea. Sustainability 12(13):5275

    CAS  Google Scholar 

  • Kim S-K, Kim J-S, Lee H, Lee H-J (2021) Abundance and characteristics of microplastics in soils with different agricultural practices: Importance of sources with internal origin and environmental fate. J Hazard Mater 403:123997

    CAS  Google Scholar 

  • Kirstein IV, Kirmizi S, Wichels A, Garin-Fernandez A, Erler R, Löder M, Gerdts G (2016) Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar Environ Res 120:1–8. https://doi.org/10.1016/j.marenvres.2016.07.004

    Article  CAS  Google Scholar 

  • Klein M, Fischer EK (2019) Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany. Sci Total Environ 685:96–103

    CAS  Google Scholar 

  • Koelmans AA, Mohamed Nor NH, Hermsen E, Kooi M, Mintenig SM, De France J (2019) Microplastics in freshwaters and drinking water: critical review and assessment of data quality. Water Res 155:410–422. https://doi.org/10.1016/j.watres.2019.02.054

    Article  CAS  Google Scholar 

  • Kogel T, Bjoroy O, Toto B, Bienfait AM, Sanden M (2020) Micro- and nanoplastic toxicity on aquatic life: determining factors. Sci Total Environ 709:136050. https://doi.org/10.1016/j.scitotenv.2019.136050

    Article  CAS  Google Scholar 

  • Kosuth M, Mason SA, Wattenberg EV (2018) Anthropogenic contamination of tap water, beer, and sea salt. PLoS One 13(4):e0194970. https://doi.org/10.1371/journal.pone.0194970

    Article  CAS  Google Scholar 

  • Lambert S, Sinclair C, Boxall A (2014) Occurrence, degradation, and effect of polymer-based materials in the environment. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 227. Springer, Cham, pp 1–53. https://doi.org/10.1007/978-3-319-01327-5_1

    Chapter  Google Scholar 

  • Lattin GL, Moore CJ, Zellers AF, Moore SL, Weisberg SB (2004) A comparison of neustonic plastic and zooplankton at different depths near the southern California shore. Mar Pollut Bull 49(4):291–294

    CAS  Google Scholar 

  • Law KL (2017) Plastics in the Marine Environment. Annu Rev Mar Sci 9:205–229. https://doi.org/10.1146/annurev-marine-010816-060409

    Article  Google Scholar 

  • Li J, Liu H, Paul Chen J (2018) Microplastics in freshwater systems: a review on occurrence, environmental effects, and methods for microplastics detection. Water Res 137:362–374. https://doi.org/10.1016/j.watres.2017.12.056

    Article  CAS  Google Scholar 

  • Li Y, Shao L, Wang W, Zhang M, Feng X, Li W, Zhang D (2020) Airborne fiber particles: types, size and concentration observed in Beijing. Sci Total Environ 705:135967. https://doi.org/10.1016/j.scitotenv.2019.135967

    Article  CAS  Google Scholar 

  • Liao Y-l, Yang J-y (2020) Microplastic serves as a potential vector for Cr in an in-vitro human digestive model. Sci Total Environ 703:134805

    CAS  Google Scholar 

  • Liu EK, He WQ, Yan CR (2014a) ‘White revolution’ to ‘white pollution’ – agricultural plastic film mulch in China. Environ Res Lett 9(9):091001. https://doi.org/10.1088/1748-9326/9/9/091001

    Article  Google Scholar 

  • Liu J, Bu L, Zhu L, Luo S, Chen X, Li S (2014b) Optimizing plant density and plastic film mulch to increase maize productivity and water-use efficiency in semiarid areas. Agron J 106(4):1138–1146. https://doi.org/10.2134/agronj13.0582

    Article  Google Scholar 

  • Liu H et al (2017) Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere 185:907–917. https://doi.org/10.1016/j.chemosphere.2017.07.064

    Article  CAS  Google Scholar 

  • Liu M et al (2018) Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environ Pollut 242:855–862. https://doi.org/10.1016/j.envpol.2018.07.051

    Article  CAS  Google Scholar 

  • Liu C et al (2019a) Widespread distribution of PET and PC microplastics in dust in urban China and their estimated human exposure. Environ Int 128:116–124

    CAS  Google Scholar 

  • Liu K, Wang X, Fang T, Xu P, Zhu L, Li D (2019b) Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Sci Total Environ 675:462–471. https://doi.org/10.1016/j.scitotenv.2019.04.110

    Article  CAS  Google Scholar 

  • Liu K, Wang X, Wei N, Song Z, Li D (2019c) Accurate quantification and transport estimation of suspended atmospheric microplastics in megacities: Implications for human health. Environ Int 132:105127. https://doi.org/10.1016/j.envint.2019.105127

    Article  CAS  Google Scholar 

  • Liu K, Wu T, Wang X, Song Z, Zong C, Wei N, Li D (2019d) Consistent transport of terrestrial microplastics to the ocean through atmosphere. Environ Sci Technol 53(18):10612–10619

    CAS  Google Scholar 

  • Löder MG, Gerdts G (2015) Methodology used for the detection and identification of microplastics – a critical appraisal. In: Marine anthropogenic litter. Springer, Cham, pp 201–227

    Google Scholar 

  • Loder MGJ et al (2017) Enzymatic purification of microplastics in environmental samples. Environ Sci Technol 51(24):14283–14292. https://doi.org/10.1021/acs.est.7b03055

    Article  CAS  Google Scholar 

  • Lusher AL, McHugh M, Thompson RC (2013) Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar Pollut Bull 67(1–2):94–99. https://doi.org/10.1016/j.marpolbul.2012.11.028

    Article  CAS  Google Scholar 

  • Lusher AL, Burke A, O’Connor I, Officer R (2014) Microplastic pollution in the Northeast Atlantic Ocean: validated and opportunistic sampling. Mar Pollut Bull 88(1–2):325–333. https://doi.org/10.1016/j.marpolbul.2014.08.023

    Article  CAS  Google Scholar 

  • Lv W et al (2019) Microplastic pollution in rice-fish co-culture system: a report of three farmland stations in Shanghai, China. Sci Total Environ 652:1209–1218

    Google Scholar 

  • Ma H, Pu S, Liu S, Bai Y, Mandal S, Xing B (2020) Microplastics in aquatic environments: toxicity to trigger ecological consequences. Environ Pollut 261:114089. https://doi.org/10.1016/j.envpol.2020.114089

    Article  CAS  Google Scholar 

  • Mahadevan G, Valiyaveettil S (2021) Understanding the interactions of poly(methyl methacrylate) and poly(vinyl chloride) nanoparticles with BHK-21 cell line. Sci Rep 11(1):2089. https://doi.org/10.1038/s41598-020-80708-0

    Article  CAS  Google Scholar 

  • Mani T, Hauk A, Walter U, Burkhardt-Holm P (2015) Microplastics profile along the Rhine River. Sci Rep 5(1):17988. https://doi.org/10.1038/srep17988

    Article  CAS  Google Scholar 

  • Martínez-Gómez C, León VM, Calles S, Gomáriz-Olcina M, Vethaak AD (2017) The adverse effects of virgin microplastics on the fertilization and larval development of sea urchins. Mar Environ Res 130:69–76

    Google Scholar 

  • Mason SA, Welch VG, Neratko J (2018) Synthetic polymer contamination in bottled water. Front Chem 6:407. https://doi.org/10.3389/fchem.2018.00407

    Article  CAS  Google Scholar 

  • Mason SA et al (2020) High levels of pelagic plastic pollution within the surface waters of Lakes Erie and Ontario. J Great Lakes Res 46(2):277–288

    CAS  Google Scholar 

  • Masura J, Baker J, Foster G, Arthur C (2015) Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. NOAA Tech. Memo. NOS-OR&R-48 (2015)

    Google Scholar 

  • Mehmood T, Peng L (2022) Polyethylene scaffold net and synthetic grass fragmentation: a source of microplastics in the atmosphere? J Hazard Mater 429:128391. https://doi.org/10.1016/j.jhazmat.2022.128391

    Article  CAS  Google Scholar 

  • Mintenig SM, Loder MGJ, Primpke S, Gerdts G (2019) Low numbers of microplastics detected in drinking water from ground water sources. Sci Total Environ 648:631–635. https://doi.org/10.1016/j.scitotenv.2018.08.178

    Article  CAS  Google Scholar 

  • Mueller M-T, Fueser H, Trac LN, Mayer P, Traunspurger W, Höss S (2020) Surface-related toxicity of polystyrene beads to nematodes and the role of food availability. Environ Sci Technol 54(3):1790–1798

    CAS  Google Scholar 

  • Murray F, Cowie PR (2011) Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar Pollut Bull 62(6):1207–1217. https://doi.org/10.1016/j.marpolbul.2011.03.032

    Article  CAS  Google Scholar 

  • Napper IE, Bakir A, Rowland SJ, Thompson RC (2015) Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Mar Pollut Bull 99(1–2):178–185. https://doi.org/10.1016/j.marpolbul.2015.07.029

    Article  CAS  Google Scholar 

  • Nguyen B, Claveau-Mallet D, Hernandez LM, Xu EG, Farner JM, Tufenkji N (2019) Separation and analysis of microplastics and nanoplastics in complex environmental samples. Acc Chem Res 52(4):858–866. https://doi.org/10.1021/acs.accounts.8b00602

    Article  CAS  Google Scholar 

  • OECD (2021) Microbeads in cosmetics. https://www.oecd.org/stories/ocean/microbeads-in-cosmetics-609ea0bf. Accessed 17 Jul 2022

  • Ossmann BE, Sarau G, Holtmannspotter H, Pischetsrieder M, Christiansen SH, Dicke W (2018) Small-sized microplastics and pigmented particles in bottled mineral water. Water Res 141:307–316. https://doi.org/10.1016/j.watres.2018.05.027

    Article  CAS  Google Scholar 

  • Paluselli A, Fauvelle V, Galgani F, Sempéré R (2018) Phthalate release from plastic fragments and degradation in seawater. Environ Sci Technol 53(1):166–175. https://doi.org/10.1021/acs.est.8b05083

    Article  CAS  Google Scholar 

  • Pivokonsky M, Cermakova L, Novotna K, Peer P, Cajthaml T, Janda V (2018) Occurrence of microplastics in raw and treated drinking water. Sci Total Environ 643:1644–1651. https://doi.org/10.1016/j.scitotenv.2018.08.102

    Article  CAS  Google Scholar 

  • Poulain M et al (2018) Small microplastics as a main contributor to plastic mass balance in the North Atlantic subtropical gyre. Environ Sci Technol 53(3):1157–1164

    Google Scholar 

  • Prata JC, da Costa JP, Duarte AC, Rocha-Santos T (2019a) Methods for sampling and detection of microplastics in water and sediment: a critical review. TrAC Trends Anal Chem 110:150–159

    CAS  Google Scholar 

  • Prata JC, da Costa JP, Girao AV, Lopes I, Duarte AC, Rocha-Santos T (2019b) Identifying a quick and efficient method of removing organic matter without damaging microplastic samples. Sci Total Environ 686:131–139. https://doi.org/10.1016/j.scitotenv.2019.05.456

    Article  CAS  Google Scholar 

  • Qi R, Jones DL, Li Z, Liu Q, Yan C (2020) Behavior of microplastics and plastic film residues in the soil environment: a critical review. Sci Total Environ 703:134722

    CAS  Google Scholar 

  • Qian Z, ChongGuo T, YongMing L (2017) Various forms and deposition fluxes of microplastics identified in the coastal urban atmosphere. Chin Sci Bull 62(33):3902–3909

    Google Scholar 

  • Qin W, Hu C, Oenema O (2015) Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis. Sci Rep 5:16210. https://doi.org/10.1038/srep16210

    Article  CAS  Google Scholar 

  • Rafique A, Irfan M, Mumtaz M, Qadir A (2020) Spatial distribution of microplastics in soil with context to human activities: a case study from the urban center. Environ Monit Assess 192(11):1–13

    Google Scholar 

  • Ragusa A et al (2021) Plasticenta: first evidence of microplastics in human placenta. Environ Int 146:106274. https://doi.org/10.1016/j.envint.2020.106274

    Article  CAS  Google Scholar 

  • Renner G, Schmidt TC, Schram J (2018) Analytical methodologies for monitoring micro (nano) plastics: which are fit for purpose? Curr Opin Environ Sci Health 1:155–161

    Google Scholar 

  • Rist S, Vianello A, Winding MHS, Nielsen TG, Almeda R, Torres RR, Vollertsen J (2020) Quantification of plankton-sized microplastics in a productive coastal Arctic marine ecosystem. Environ Pollut 266(Pt 1):115248. https://doi.org/10.1016/j.envpol.2020.115248

    Article  CAS  Google Scholar 

  • Rodrigues M, Gonçalves A, Gonçalves F, Nogueira H, Marques J, Abrantes N (2018) Effectiveness of a methodology of microplastics isolation for environmental monitoring in freshwater systems. Ecol Indic 89:488–495

    CAS  Google Scholar 

  • Rodriguez-Seijo A, Lourenço J, Rocha-Santos TAP, da Costa J, Duarte AC, Vala H, Pereira R (2017) Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environ Pollut 220:495–503. https://doi.org/10.1016/j.envpol.2016.09.092

    Article  CAS  Google Scholar 

  • Sajjad M et al (2022) Microplastics in the soil environment: a critical review. Environ Technol Innov 27:102408. https://doi.org/10.1016/j.eti.2022.102408

    Article  CAS  Google Scholar 

  • Scheurer M, Bigalke M (2018) Microplastics in Swiss floodplain soils. Environ Sci Technol 52(6):3591–3598. https://doi.org/10.1021/acs.est.7b06003

    Article  CAS  Google Scholar 

  • Schwabl P, Köppel S, Königshofer P, Bucsics T, Trauner M, Reiberger T, Liebmann B (2019) Detection of various microplastics in human stool: a prospective case series. Ann Intern Med 171(7):453–457

    Google Scholar 

  • Schymanski D, Goldbeck C, Humpf H-U, Fürst P (2018) Analysis of microplastics in water by micro-Raman spectroscopy: release of plastic particles from different packaging into mineral water. Water Res 129:154–162. https://doi.org/10.1016/j.watres.2017.11.011

    Article  CAS  Google Scholar 

  • Sharma S, Basu S, Shetti NP, Nadagouda MN, Aminabhavi TM (2021) Microplastics in the environment: occurrence, perils, and eradication. Chem Eng J 408:127317

    CAS  Google Scholar 

  • Shim WJ, Hong SH, Eo SE (2017) Identification methods in microplastic analysis: a review. Anal Methods 9(9):1384–1391

    CAS  Google Scholar 

  • Shruti V, Pérez-Guevara F, Elizalde-Martínez I, Kutralam-Muniasamy G (2021) Current trends and analytical methods for evaluation of microplastics in stormwater. Trends Environ Anal Chem 30:e00123

    CAS  Google Scholar 

  • Sighicelli M et al (2018) Microplastic pollution in the surface waters of Italian Subalpine Lakes. Environ Pollut 236:645–651

    CAS  Google Scholar 

  • Silva AB, Bastos AS, Justino CIL, da Costa JP, Duarte AC, Rocha-Santos TAP (2018) Microplastics in the environment: challenges in analytical chemistry – a review. Anal Chim Acta 1017:1–19. https://doi.org/10.1016/j.aca.2018.02.043

    Article  CAS  Google Scholar 

  • Singh L, Wahid ZA (2015) Methods for enhancing bio-hydrogen production from biological process: a review. J Ind Eng Chem 21:70–80. https://doi.org/10.1016/j.jiec.2014.05.035

    Article  CAS  Google Scholar 

  • Siwer P, Domagala-Swatkiewicz I, Kalisz A (2015) The influence of degradable polymer mulches on soil properties and cucumber yeld. Agrochimica 59(2):108–123. https://doi.org/10.12871/0021857201522

    Article  CAS  Google Scholar 

  • Soltani NS, Taylor MP, Wilson SP (2021) Quantification and exposure assessment of microplastics in Australian indoor house dust. Environ Pollut 283:117064

    CAS  Google Scholar 

  • Souza Machado AA, Kloas W, Zarfl C, Hempel S, Rillig MC (2018) Microplastics as an emerging threat to terrestrial ecosystems. Glob Chang Biol 24(4):1405–1416. https://doi.org/10.1111/gcb.14020

    Article  Google Scholar 

  • Strand J, Feld L, Murphy F, Mackevica A, Hartmann NB (2018) Analysis of microplastic particles in Danish drinking water. DCE-Danish Centre for Environment and Energy. Aarhus University, Denmark

    Google Scholar 

  • Suits LD, Sheahan TC, Lakshmikantha MR, Prat PC, Ledesma A (2009) Image analysis for the quantification of a developing crack network on a drying soil. Geotech Test J 32(6):102216. https://doi.org/10.1520/gtj102216

    Article  Google Scholar 

  • Sun K, Song Y, He F, Jing M, Tang J, Liu R (2021) A review of human and animals exposure to polycyclic aromatic hydrocarbons: health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics. Sci Total Environ 773:145403

    CAS  Google Scholar 

  • Szewc K, Graca B, Dolega A (2021) Atmospheric deposition of microplastics in the coastal zone: characteristics and relationship with meteorological factors. Sci Total Environ 761:143272. https://doi.org/10.1016/j.scitotenv.2020.143272

    Article  CAS  Google Scholar 

  • Tagg AS, Sapp M, Harrison JP, Ojeda JJ (2015) Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging. Anal Chem 87(12):6032–6040

    CAS  Google Scholar 

  • Tagg A, Harrison JP, Ju-Nam Y, Sapp M, Bradley EL, Sinclair CJ, Ojeda JJ (2017) Fenton’s reagent for the rapid and efficient isolation of microplastics from wastewater. Chem Commun 53(2):372–375

    CAS  Google Scholar 

  • Taniguchi I, Yoshida S, Hiraga K, Miyamoto K, Kimura Y, Oda K (2019) Biodegradation of PET: current status and application aspects. ACS Catal 9(5):4089–4105. https://doi.org/10.1021/acscatal.8b05171

    Article  CAS  Google Scholar 

  • Thomas D, Schütze B, Heinze WM, Steinmetz Z (2020) Sample preparation techniques for the analysis of microplastics in soil – a review. Sustainability 12(21):9074

    CAS  Google Scholar 

  • Torres-Agullo A, Karanasiou A, Moreno T, Lacorte S (2021) Overview on the occurrence of microplastics in air and implications from the use of face masks during the COVID-19 pandemic. Sci Total Environ 800:149555. https://doi.org/10.1016/j.scitotenv.2021.149555

    Article  CAS  Google Scholar 

  • Usman S et al (2020) Microplastics pollution as an invisible potential threat to food safety and security, policy challenges and the way forward. Int J Environ Res Public Health 17(24):9591

    CAS  Google Scholar 

  • van den Berg P, Huerta-Lwanga E, Corradini F, Geissen V (2020) Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environ Pollut 261:114198

    Google Scholar 

  • van Franeker JA (1985) Plastic ingestion in the North Atlantic fulmar. Mar Pollut Bull 16(9):367–369. https://doi.org/10.1016/0025-326x(85)90090-6

    Article  Google Scholar 

  • Vermaire JC, Pomeroy C, Herczegh SM, Haggart O, Murphy M (2017) Microplastic abundance and distribution in the open water and sediment of the Ottawa River, Canada, and its tributaries. Facets 2(1):301–314

    Google Scholar 

  • Vethaak AD, Legler J (2021) Microplastics and human health. Science 371(6530):672–674. https://doi.org/10.1126/science.abe5041

    Article  CAS  Google Scholar 

  • Vianello A, Jensen RL, Liu L, Vollertsen J (2019) Simulating human exposure to indoor airborne microplastics using a breathing thermal manikin. Sci Rep 9(1):1–11

    Google Scholar 

  • Wan Y, Wu C, Xue Q, Hui X (2019) Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci Total Environ 654:576–582. https://doi.org/10.1016/j.scitotenv.2018.11.123

    Article  CAS  Google Scholar 

  • Wang L et al (2016a) Effect of di-n-butyl phthalate (DBP) on the fruit quality of cucumber and the health risk. Environ Sci Pollut Res 23(23):24298–24304. https://doi.org/10.1007/s11356-016-7658-1

    Article  CAS  Google Scholar 

  • Wang YP, Li XG, Fu T, Wang L, Turner NC, Siddique KHM, Li F-M (2016b) Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China. Agric For Meteorol 228–229:42–51. https://doi.org/10.1016/j.agrformet.2016.06.016

    Article  Google Scholar 

  • Wang J, Liu X, Li Y, Powell T, Wang X, Wang G, Zhang P (2019a) Microplastics as contaminants in the soil environment: a mini-review. Sci Total Environ 691:848–857. https://doi.org/10.1016/j.scitotenv.2019.07.209

    Article  CAS  Google Scholar 

  • Wang W, Gao H, Jin S, Li R, Na G (2019b) The ecotoxicological effects of microplastics on aquatic food web, from primary producer to human: a review. Ecotoxicol Environ Saf 173:110–117. https://doi.org/10.1016/j.ecoenv.2019.01.113

    Article  CAS  Google Scholar 

  • Wang X, Li C, Liu K, Zhu L, Song Z, Li D (2020a) Atmospheric microplastic over the South China Sea and East Indian Ocean: abundance, distribution and source. J Hazard Mater 389:121846. https://doi.org/10.1016/j.jhazmat.2019.121846

    Article  CAS  Google Scholar 

  • Wang X, Zheng H, Zhao J, Luo X, Wang Z, Xing B (2020b) Photodegradation elevated the toxicity of polystyrene microplastics to grouper (epinephelus moara) through disrupting hepatic lipid homeostasis. Environ Sci Technol 54(10):6202–6212. https://doi.org/10.1021/acs.est.9b07016

    Article  CAS  Google Scholar 

  • Wang Z, Lin T, Chen W (2020c) Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP). Sci Total Environ 700:134520. https://doi.org/10.1016/j.scitotenv.2019.134520

    Article  CAS  Google Scholar 

  • Wang C, Zhao J, Xing B (2021) Environmental source, fate, and toxicity of microplastics. J Hazard Mater 407:124357. https://doi.org/10.1016/j.jhazmat.2020.124357

    Article  CAS  Google Scholar 

  • Wells T, Hancock G (2014) Comparison of vertical transport of 137Cs and organic carbon in agricultural cracking soils. Geoderma 214–215:228–238. https://doi.org/10.1016/j.geoderma.2013.09.007

    Article  CAS  Google Scholar 

  • Wen B, Jin S-R, Chen Z-Z, Gao J-Z, Liu Y-N, Liu J-H, Feng X-S (2018) Single and combined effects of microplastics and cadmium on the cadmium accumulation, antioxidant defence and innate immunity of the discus fish (Symphysodon aequifasciatus). Environ Pollut 243:462–471

    CAS  Google Scholar 

  • Wright SL, Kelly FJ (2017) Plastic and human health: a micro issue? Environ Sci Technol 51(12):6634–6647

    CAS  Google Scholar 

  • Wright SL, Ulke J, Font A, Chan KLA, Kelly FJ (2020) Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ Int 136:105411. https://doi.org/10.1016/j.envint.2019.105411

    Article  CAS  Google Scholar 

  • Wright SL, Gouin T, Koelmans AA, Scheuermann L (2021) Development of screening criteria for microplastic particles in air and atmospheric deposition: critical review and applicability towards assessing human exposure. Micropl Nanopl 1(1):1–18

    Google Scholar 

  • Wu Y, Guo P, Zhang X, Zhang Y, Xie S, Deng J (2019) Effect of microplastics exposure on the photosynthesis system of freshwater algae. J Hazard Mater 374:219–227

    CAS  Google Scholar 

  • Xu J-L, Thomas KV, Luo Z, Gowen AA (2019) FTIR and Raman imaging for microplastics analysis: state of the art, challenges and prospects. TrAC Trends Anal Chem 119:115629. https://doi.org/10.1016/j.trac.2019.115629

    Article  CAS  Google Scholar 

  • Xu S, Ma J, Ji R, Pan K, Miao AJ (2020a) Microplastics in aquatic environments: occurrence, accumulation, and biological effects. Sci Total Environ 703:134699. https://doi.org/10.1016/j.scitotenv.2019.134699

    Article  CAS  Google Scholar 

  • Xu X, Wong C, Tam NF, Lo H-S, Cheung S-G (2020b) Microplastics in invertebrates on soft shores in Hong Kong: influence of habitat, taxa and feeding mode. Sci Total Environ 715:136999

    CAS  Google Scholar 

  • Yu J, Wang P, Ni F, Cizdziel J, Wu D, Zhao Q, Zhou Y (2019) Characterization of microplastics in environment by thermal gravimetric analysis coupled with Fourier transform infrared spectroscopy. Mar Pollut Bull 145:153–160. https://doi.org/10.1016/j.marpolbul.2019.05.037

    Article  CAS  Google Scholar 

  • Yu L, Zhang J, Liu Y, Chen L, Tao S, Liu W (2021) Distribution characteristics of microplastics in agricultural soils from the largest vegetable production base in China. Sci Total Environ 756:143860. https://doi.org/10.1016/j.scitotenv.2020.143860

    Article  CAS  Google Scholar 

  • Yu H et al (2022) Impact of microplastics on the foraging, photosynthesis and digestive systems of submerged carnivorous macrophytes under low and high nutrient concentrations. Environ Pollut 292:118220

    CAS  Google Scholar 

  • Yukioka S et al (2020) Occurrence and characteristics of microplastics in surface road dust in Kusatsu (Japan), Da Nang (Vietnam), and Kathmandu (Nepal). Environ Pollut 256:113447. https://doi.org/10.1016/j.envpol.2019.113447

    Article  CAS  Google Scholar 

  • Zhang GS, Liu YF (2018) The distribution of microplastics in soil aggregate fractions in southwestern China. Sci Total Environ 642:12–20. https://doi.org/10.1016/j.scitotenv.2018.06.004

    Article  CAS  Google Scholar 

  • Zhang K, Su J, Xiong X, Wu X, Wu C, Liu J (2016) Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China. Environ Pollut 219:450–455. https://doi.org/10.1016/j.envpol.2016.05.048

    Article  CAS  Google Scholar 

  • Zhang J, Wang L, Kannan K (2020a) Microplastics in house dust from 12 countries and associated human exposure. Environ Int 134:105314. https://doi.org/10.1016/j.envint.2019.105314

    Article  CAS  Google Scholar 

  • Zhang Q, Xu EG, Li J, Chen Q, Ma L, Zeng EY, Shi H (2020b) A review of microplastics in table salt, drinking water, and air: direct human exposure. Environ Sci Technol 54(7):3740–3751. https://doi.org/10.1021/acs.est.9b04535

    Article  CAS  Google Scholar 

  • Zhang Q, Zhao Y, Du F, Cai H, Wang G, Shi H (2020c) Microplastic fallout in different indoor environments. Environ Sci Technol 54(11):6530–6539

    CAS  Google Scholar 

  • Zhang Y, Kang S, Allen S, Allen D, Gao T, Sillanpää M (2020d) Atmospheric microplastics: a review on current status and perspectives. Earth Sci Rev 203:103118. https://doi.org/10.1016/j.earscirev.2020.103118

    Article  CAS  Google Scholar 

  • Zhou Y, Liu X, Wang J (2019) Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China. Sci Total Environ 694:133798. https://doi.org/10.1016/j.scitotenv.2019.133798

    Article  CAS  Google Scholar 

  • Zhou B et al (2020) Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China: multiple sources other than plastic mulching film. J Hazard Mater 388:121814

    CAS  Google Scholar 

  • Zhou Y et al (2021) Microplastic contamination is ubiquitous in riparian soils and strongly related to elevation, precipitation and population density. J Hazard Mater 411:125178

    CAS  Google Scholar 

  • Zhu J, Wang C (2020) Recent advances in the analysis methodologies for microplastics in aquatic organisms: current knowledge and research challenges. Anal Methods 12(23):2944–2957. https://doi.org/10.1039/d0ay00143k

    Article  CAS  Google Scholar 

  • Ziajahromi S, Neale PA, Rintoul L, Leusch FD (2017) Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics. Water Res 112:93–99. https://doi.org/10.1016/j.watres.2017.01.042

    Article  CAS  Google Scholar 

  • Ziajahromi S, Drapper D, Hornbuckle A, Rintoul L, Leusch FD (2020) Microplastic pollution in a stormwater floating treatment wetland: detection of tyre particles in sediment. Sci Total Environ 713:136356

    CAS  Google Scholar 

  • Zobkov M, Esiukova E (2018) Microplastics in a marine environment: review of methods for sampling, processing, and analyzing microplastics in water, bottom sediments, and coastal deposits. Oceanology 58(1):137–143

    Google Scholar 

  • Zobkov MB, Esiukova EE, Zyubin AY, Samusev IG (2019) Microplastic content variation in water column: the observations employing a novel sampling tool in stratified Baltic Sea. Mar Pollut Bull 138:193–205. https://doi.org/10.1016/j.marpolbul.2018.11.047

    Article  CAS  Google Scholar 

  • Zuccarello P et al (2019) Reply for comment on “Exposure to microplastics (<10 mum) associated to plastic bottles mineral water consumption: the first quantitative study by Zuccarello et al. [Water Research 157 (2019) 365-371]”. Water Res 166:115077. https://doi.org/10.1016/j.watres.2019.115077

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to the National Natural Science Foundation of China, Start-up funding from Hainan University for financial support. Dr. Tariq Mehmood is thankful to the Hainan University of Hainan, China, for the postdoctoral position.

Funding

This study was supported, in part, by the National Natural Science Foundation of China (41766003), Start-up funding from Hainan University (kyqd(zr)1719).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Licheng Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehmood, T. et al. (2023). Characterization and Toxicology of Microplastics in Soils, Water and Air. In: Wang, C., Babel, S., Lichtfouse, E. (eds) Microplastic Occurrence, Fate, Impact, and Remediation. Environmental Chemistry for a Sustainable World, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-031-36351-1_2

Download citation

Publish with us

Policies and ethics