Skip to main content

3D Graphene Structures for the Removal of Pharmaceutical Residues

  • Chapter
  • First Online:
3D Graphene

Part of the book series: Carbon Nanostructures ((CARBON))

  • 271 Accesses

Abstract

Graphene nanomaterials have great potential applications in treating wastewater containing pharmaceutical residues due to their extraordinary physicochemical and adsorption properties. Despite being present in minute amounts in the aquatic environment, pharmaceutical residues can cause various health and environmental risks owing to their non-biodegradability, bioaccumulative and toxicity features. Hence, it is extremely vital to control the concentration of pharmaceutical residues in water resources. Notably, three-dimensional (3D) graphene structures have emerged as innovative adsorbents with fortified adsorption properties such as super-large theoretical surface area, abundant functional groups, and the capability to preserve the intrinsic properties of nanomaterials at a macroscopic level. In this chapter, the classification and main sources of pharmaceutical pollution are discussed. Thereafter, the principles and advantages of adsorption for pharmaceutical removal are covered. This chapter further evaluates the performance of primary 3D graphene structures, namely graphene aerogel, hydrogel, and beads, in relation to pharmaceutical adsorption. The synthesis methods and adsorption mechanisms of pharmaceutical residues by 3D graphene structures are assayed. Lastly, the challenges and outlook of 3D graphene structures in pharmaceutical adsorption are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kujawska, A., Kiełkowska, U., Atisha, A., Yanful, E., Kujawski, W.: Comparative analysis of separation methods used for the elimination of pharmaceuticals and personal care products (PPCPs) from water—a critical review. Sep. Purif. Technol. 290, 120797 (2022)

    Article  CAS  Google Scholar 

  2. Shearer, L., Pap, S., Gibb, S.W.: Removal of pharmaceuticals from wastewater: a review of adsorptive approaches, modelling and mechanisms for metformin and macrolides. J. Environ. Chem. Eng. 10(4), 108106 (2022)

    Article  CAS  Google Scholar 

  3. Alnajjar, M., Hethnawi, A., Nafie, G., Hassan, A., Vitale, G., Nassar, N.N.: Silica-alumina composite as an effective adsorbent for the removal of metformin from water. J. Environ. Chem. Eng. 7(3), 102994 (2019)

    Article  CAS  Google Scholar 

  4. Quesada, H.B., Baptista, A.T.A., Cusioli, L.F., Seibert, D., de Oliveira Bezerra, C., Bergamasco, R.: Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: a review. Chemosphere 222, 766–780 (2019)

    Google Scholar 

  5. Liu, Y.-P., Lv, Y.-T., Guan, J.-F., Khoso, F.M., Jiang, X.-Y., Chen, J., Li, W.-J., Yu, J.-G.: Rational design of three-dimensional graphene/graphene oxide-based architectures for the efficient adsorption of contaminants from aqueous solutions. J. Mol. Liq. 343, 117709 (2021)

    Article  CAS  Google Scholar 

  6. He, J., Cui, A., Ni, F., Deng, S., Shen, F., Yang, G.: A novel 3D yttrium based-graphene oxide-sodium alginate hydrogel for remarkable adsorption of fluoride from water. J. Colloid Interface Sci. 531, 37–46 (2018)

    Article  CAS  Google Scholar 

  7. Hiew, B.Y.Z., Tee, W.T., Loh, N.Y.L., Lai, K.C., Hanson, S., Gan, S., Thangalazhy-Gopakumar, S., Lee, L.Y.: Synthesis of a highly recoverable 3D MnO2/rGO hybrid aerogel for efficient adsorptive separation of pharmaceutical residue. J. Environ. Sci. 118, 194–203 (2022)

    Article  CAS  Google Scholar 

  8. Wong, S., Lim, Y., Ngadi, N., Mat, R., Hassan, O., Inuwa, I.M., Mohamed, N.B., Low, J.H.: Removal of acetaminophen by activated carbon synthesized from spent tea leaves: equilibrium, kinetics and thermodynamics studies. Powder Technol. 338, 878–886 (2018)

    Article  CAS  Google Scholar 

  9. Tee, W.T., Loh, N.Y.L., Hiew, B.Y.Z., Show, P.L., Hanson, S., Gan, S., Lee, L.Y.: Evaluation of adsorption performance and mechanisms of a highly effective 3D boron-doped graphene composite for amitriptyline pharmaceutical removal. J. Environ. Manage. 344, 118363 (2023)

    Article  Google Scholar 

  10. Iqbal, J., Shah, N.S., Khan, Z.U.H., Rizwan, M., Murtaza, B., Jamil, F., Shah, A., Ullah, A., Nazzal, Y., Howari, F.: Visible light driven doped CeO2 for the treatment of pharmaceuticals in wastewater: a review. J. Water Process Eng. 49, 103130 (2022)

    Article  Google Scholar 

  11. Al Falahi, O.A., Abdullah, S.R.S., Hasan, H.A., Othman, A.R., Ewadh, H.M., Kurniawan, S.B., Imron, M.F.: Occurrence of pharmaceuticals and personal care products in domestic wastewater, available treatment technologies, and potential treatment using constructed wetland: a review. Process Saf. Environ. Protect. 168, 1067–1088 (2022)

    Google Scholar 

  12. Mackuľak, T., Černanský, S., Fehér, M., Birošová, L., Gál, M.: Pharmaceuticals, drugs, and resistant microorganisms—environmental impact on population health. Curr. Opin. Environ. Sci. Health 9, 40–48 (2019)

    Article  Google Scholar 

  13. Ramírez-Durán, N., Moreno-Pérez, P.A., Sandoval-Trujillo, A.H.: Bacterial treatment of pharmaceutical industry effluents. Ecopharmacovigilance 175–187 (2017)

    Google Scholar 

  14. Hussain, I., Khan, M.Z., Khan, A., Javed, I., Saleemi, M.K.: Toxicological effects of diclofenac in four avian species. Avian Pathol. 37(3), 315–321 (2008)

    Article  CAS  Google Scholar 

  15. Van der Meer, T.P., Artacho-Cordón, F., Swaab, D.F., Struik, D., Makris, K.C., Wolffenbuttel, B.H.R., Frederiksen, H., Van Vliet-Ostaptchouk, J.V.: Distribution of non-persistent endocrine disruptors in two different regions of the human brain. Int. J. Environ. Res. Public Health (2017)

    Google Scholar 

  16. Kumar, M., Sridharan, S., Sawarkar, A.D., Shakeel, A., Anerao, P., Mannina, G., Sharma, P., Pandey, A.: Current research trends on emerging contaminants pharmaceutical and personal care products (PPCPs): a comprehensive review. Sci. Total Environ. 859, 160031 (2023)

    Article  CAS  Google Scholar 

  17. Madikizela, L.M., Ncube, S., Chimuka, L.: Uptake of pharmaceuticals by plants grown under hydroponic conditions and natural occurring plant species: a review. Sci. Total Environ. 636, 477–486 (2018)

    Article  CAS  Google Scholar 

  18. Rouquerol, F., Rouquerol, J., Sing, K.S.W., Maurin, G., Llewellyn, P.: 1 - Introduction. In: Rouquerol, F., Rouquerol, J., Sing, K.S.W., Llewellyn, P., Maurin, G. (eds.) Adsorption by Powders and Porous Solids (Second Edition), pp. 1–24. Academic Press, Oxford (2014)

    Google Scholar 

  19. Chen, M., Yan, Z., Luan, J., Sun, X., Liu, W., Ke, X.: π-π electron-donor-acceptor (EDA) interaction enhancing adsorption of tetracycline on 3D PPY/CMC aerogels. Chem. Eng. J. 454, 140300 (2023)

    Article  CAS  Google Scholar 

  20. Pinelli, F., Piras, C., Rossi, F.: A perspective on graphene based aerogels and their environmental applications. FlatChem 36, 100449 (2022)

    Article  CAS  Google Scholar 

  21. Gang, D., Uddin Ahmad, Z., Lian, Q., Yao, L., Zappi, M.E.: A review of adsorptive remediation of environmental pollutants from aqueous phase by ordered mesoporous carbon. Chem. Eng. J. 403, 126286 (2021)

    Google Scholar 

  22. Ateia, M., Helbling, D.E., Dichtel, W.R.: Best practices for evaluating new materials as adsorbents for water treatment. ACS Mater. Lett. 2(11), 1532–1544 (2020)

    Article  CAS  Google Scholar 

  23. Liu, H., Qiu, H.: Recent advances of 3D graphene-based adsorbents for sample preparation of water pollutants: a review. Chem. Eng. J. 393, 124691 (2020)

    Article  CAS  Google Scholar 

  24. Hiew, B.Y.Z., Lee, L.Y., Lee, X.J., Thangalazhy-Gopakumar, S., Gan, S., Lim, S.S., Pan, G.-T., Yang, T.C.-K., Chiu, W.S., Khiew, P.S.: Review on synthesis of 3D graphene-based configurations and their adsorption performance for hazardous water pollutants. Process Saf. Environ. Prot. 116, 262–286 (2018)

    Article  CAS  Google Scholar 

  25. Zhuang, Y., Yu, F., Ma, J., Chen, J.: Enhanced adsorption removal of antibiotics from aqueous solutions by modified alginate/graphene double network porous hydrogel. J. Colloid Interface Sci. 507, 250–259 (2017)

    Article  CAS  Google Scholar 

  26. Ma, J., Jiang, Z., Cao, J., Yu, F.: Enhanced adsorption for the removal of antibiotics by carbon nanotubes/graphene oxide/sodium alginate triple-network nanocomposite hydrogels in aqueous solutions. Chemosphere 242, 125188 (2020)

    Article  CAS  Google Scholar 

  27. Zhang, P., Yin, L., Yang, X., Wang, J., Chi, M., Qiu, J.: Cotton-derived 3D carbon fiber aerogel to in situ support Bi2O3 nanoparticles as a separation-free photocatalyst for antibiotic removal. Carbon 201, 110–119 (2023)

    Article  CAS  Google Scholar 

  28. Jiang, X., Du, R., Hübner, R., Hu, Y., Eychmüller, A.: A roadmap for 3D metal aerogels: materials design and application attempts. Matter 4(1), 54–94 (2021)

    Article  CAS  Google Scholar 

  29. Wu, W., Du, M., Shi, H., Zheng, Q., Bai, Z.: Application of graphene aerogels in oil spill recovery: a review. Sci. Total Environ. 856, 159107 (2023)

    Article  CAS  Google Scholar 

  30. Lv, Y., Liang, Z., Li, Y., Chen, Y., Liu, K., Yang, G., Liu, Y., Lin, C., Ye, X., Shi, Y., Liu, M.: Efficient adsorption of diclofenac sodium in water by a novel functionalized cellulose aerogel. Environ. Res. 194, 110652 (2021)

    Article  CAS  Google Scholar 

  31. Han, L., Khalil, A.M.E., Wang, J., Chen, Y., Li, F., Chang, H., Zhang, H., Liu, X., Li, G., Jia, Q., Zhang, S.: Graphene-boron nitride composite aerogel: a high efficiency adsorbent for ciprofloxacin removal from water. Sep. Purif. Technol. 278, 119605 (2021)

    Article  Google Scholar 

  32. Liu, Y., Fu, J., He, J., Wang, B., He, Y., Luo, L., Wang, L., Chen, C., Shen, F., Zhang, Y.: Synthesis of a superhydrophilic coral-like reduced graphene oxide aerogel and its application to pollutant capture in wastewater treatment. Chem. Eng. Sci. 260, 117860 (2022)

    Article  CAS  Google Scholar 

  33. Yu, F., Yang, P., Yang, Z., Zhang, X., Ma, J.: Double-network hydrogel adsorbents for environmental applications. Chem. Eng. J. 426, 131900 (2021)

    Article  CAS  Google Scholar 

  34. Guo, Y., Bae, J., Fang, Z., Li, P., Zhao, F., Yu, G.: Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem. Rev. 120(15), 7642–7707 (2020)

    Article  CAS  Google Scholar 

  35. Wang, X.-H., Song, F., Qian, D., He, Y.-D., Nie, W.-C., Wang, X.-L., Wang, Y.-Z.: Strong and tough fully physically crosslinked double network hydrogels with tunable mechanics and high self-healing performance. Chem. Eng. J. 349, 588–594 (2018)

    Article  CAS  Google Scholar 

  36. Wu, Y., Zhu, J., Huang, L.: A review of three-dimensional graphene-based materials: synthesis and applications to energy conversion/storage and environment. Carbon 143, 610–640 (2019)

    Article  CAS  Google Scholar 

  37. He, J., Ni, F., Cui, A., Chen, X., Deng, S., Shen, F., Huang, C., Yang, G., Song, C., Zhang, J., Tian, D., Long, L., Zhu, Y., Luo, L.: New insight into adsorption and co-adsorption of arsenic and tetracycline using a Y-immobilized graphene oxide-alginate hydrogel: adsorption behaviours and mechanisms. Sci. Total Environ. 701, 134363 (2020)

    Article  CAS  Google Scholar 

  38. Feng, X., Qiu, B., Dang, Y., Sun, D.: Enhanced adsorption of naproxen from aquatic environments by β-cyclodextrin-immobilized reduced graphene oxide. Chem. Eng. J. 412, 128710 (2021)

    Article  CAS  Google Scholar 

  39. Bezerra de Araujo, C.M., Wernke, G., Ghislandi, M.G., Diório, A., Vieira, M.F., Bergamasco, R., Alves da Motta Sobrinho, M., Rodrigues, A.E.: Continuous removal of pharmaceutical drug chloroquine and Safranin-O dye from water using agar-graphene oxide hydrogel: selective adsorption in batch and fixed-bed experiments. Environ. Res. 216, 114425 (2023)

    Google Scholar 

  40. Liu, H., Tian, X., Xiang, X., Chen, S.: Preparation of carboxymethyl cellulose/graphene composite aerogel beads and their adsorption for methylene blue. Int. J. Biol. Macromol. 202, 632–643 (2022)

    Article  CAS  Google Scholar 

  41. Li, Z., Huang, X., Wu, K., Jiao, Y., Zhou, C.: Fabrication of regular macro-mesoporous reduced graphene aerogel beads with ultra-high mechanical property for efficient bilirubin adsorption. Mater. Sci. Eng., C 106, 110282 (2020)

    Article  CAS  Google Scholar 

  42. Yang, P., Yu, F., Yang, Z., Zhang, X., Ma, J.: Graphene oxide modified κ-carrageenan/sodium alginate double-network hydrogel for effective adsorption of antibiotics in a batch and fixed-bed column system. Sci. Total Environ. 837, 155662 (2022)

    Article  CAS  Google Scholar 

  43. Bratovcic, A., Petrinic, I.: Carbon based aerogels and xerogels for removing of toxic organic compounds. In: International Conference “New Technologies, Development and Applications”, Springer, pp. 743–749 (2020)

    Google Scholar 

  44. Segovia-Sandoval, S.J., Pastrana-Martínez, L.M., Ocampo-Pérez, R., Morales-Torres, S., Berber-Mendoza, M.S., Carrasco-Marín, F.: Synthesis and characterization of carbon xerogel/graphene hybrids as adsorbents for metronidazole pharmaceutical removal: effect of operating parameters. Sep. Purif. Technol. 237, 116341 (2020)

    Article  CAS  Google Scholar 

  45. Juengchareonpoon, K., Wanichpongpan, P., Boonamnuayvitaya, V.: Trimethoprim adsorption using graphene oxide-carboxymethylcellulose film coated on polyethylene terephthalate as a supporter. Chem. Eng. Process.—Process Intensification 169, 108641 (2021)

    Article  CAS  Google Scholar 

  46. Zambianchi, M., Khaliha, S., Bianchi, A., Tunioli, F., Kovtun, A., Navacchia, M.L., Salatino, A., Xia, Z., Briñas, E., Vázquez, E., Paci, D., Palermo, V., Bocchi, L., Casentini, B., Melucci, M.: Graphene oxide-polysulfone hollow fibers membranes with synergic ultrafiltration and adsorption for enhanced drinking water treatment. J. Membr. Sci. 658, 120707 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Ministry of Higher Education (MOHE), Malaysia, under the Fundamental Research Grant Scheme, FRGS/1/2020/STG05/UNIM/02/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lai Yee Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tee, W.T., Loh, N.Y.L., Hiew, B.Y.Z., Lee, L.Y. (2023). 3D Graphene Structures for the Removal of Pharmaceutical Residues. In: Gupta, R.K. (eds) 3D Graphene. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-031-36249-1_11

Download citation

Publish with us

Policies and ethics