Skip to main content

Numerical Simulation of Strength and Aerodynamic Characteristics of Small Wind Turbine Blades

  • Conference paper
  • First Online:
Integrated Computer Technologies in Mechanical Engineering - 2022 (ICTM 2022)

Abstract

The main aim of this research is to develop effective methods to estimate strength and aerodynamic characteristics of small wind turbine blades for receiving the maximum aerodynamic quality. The aerodynamics of the wind turbine blades has been studied depending on their geometry and flow Reynolds numbers. Finite and boundary element methods have been used for numerical simulation. The two-dimensional hexagonal mesh has been generated for aerodynamics simulation, with thickening around the blade profile and the thin boundary layer adjacent to the airfoil. Modal analysis has been carried out. A discrete analogue of the wind turbine has been created to study the aerodynamic characteristics of wind turbine blades using the Shear Stress Transport turbulence model. The influence of the attack angle on the aerodynamic characteristics has been studied, and its critical value has been found. The comparison of results of estimating the aerodynamic characteristics using boundary and finite element methods has been accomplished.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartczak, A., Budziński, W., Gołębiowska, B.: Impact of beliefs about negative effects of wind turbines on preference heterogeneity regarding renewable energy development in Poland. Resour. Conserv. Recycl. 169, 105530 (2021). https://doi.org/10.1016/j.resconrec.2021.105530

    Article  Google Scholar 

  2. Battisti, L., Benini, E., Brighenti, A., Dell’Anna, S., Castelli, M.R.: Small wind turbine effectiveness in the urban environment. Renew. Energy 129, 102–113 (2018)

    Article  Google Scholar 

  3. Sarkar, M., Julai, S., Wen Tong, C., Toha, S.F.: Effectiveness of nature-inspired algorithms using ANFIS for blade design optimization and wind turbine efficiency. Symmetry 19, 456–460 (2019)

    Article  Google Scholar 

  4. Zalewska, J., Damaziak, K., Malachowski, J.: An energy efficiency estimation procedure for small wind turbines at chosen locations in Poland. Energies 14, 3706 (2021). https://doi.org/10.3390/en14123706

    Article  Google Scholar 

  5. El-Mouhsine, A., Oukassou, S., Ichenial, K., Kharbouch, M.M., Hajraoui, B.: Aerodynamics and structural analysis of wind turbine blade. Procedia Manuf. 22, 747–756 (2018)

    Article  Google Scholar 

  6. Sriti, M.: Improved blade element momentum theory (BEM) for predicting the aerodynamic performances of horizontal Axis wind turbine blade (HAWT). Tech. Mech. Sci. J. Fundam. Appl. Eng. Mech. 38, 191–202 (2018)

    Google Scholar 

  7. Kavari, G., Tahani, M., Mirhosseini, M.: Wind shear effect on aerodynamic performance and energy production of horizontal axis wind turbines with developing blade element momentum theory. J. Clean. Prod. 219, 368–376 (2019)

    Article  Google Scholar 

  8. Bukala, J., Damaziak, K., Karimi, H.R., Jalachowski, M., Robbersmyr, K.G.: Evolutionary computing methodology for small wind turbine supporting structures. Int. J. Adv. Manuf. Technol. 100, 2741–2752 (2019)

    Article  Google Scholar 

  9. Saint-Drenan, Y.M., et al.: A parametric model for wind turbine power curves incorporating environmental conditions. Renew. Energy 157, 754–768 (2020)

    Article  Google Scholar 

  10. Smetankina, N., Kravchenko, I., Merculov, V., Ivchenko, D., Malykhina, A.: Modelling of bird strike on an aircraft glazing. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds.) Integrated Computer Technologies in Mechanical Engineering. AISC, vol. 1113, pp. 289–297. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37618-5_25

    Chapter  Google Scholar 

  11. Rusanov, A., Shubenko, A., Senetskyi, O., Babenko, O., Rusanov, R.: Heating modes and design optimization of cogeneration steam turbines of powerful units of combined heat and power plant. Energetika 65(1), 39–50 (2019). https://doi.org/10.6001/energetika.v65i1.3974

    Article  Google Scholar 

  12. Rusanov, A.V., Solovey, V.V., Lototskyy, M.V.: Thermodynamic features of metal hydride thermal sorption compressors and perspectives of their application in hydrogen liquefaction systems. J. Phys.: Energy 2(2), 021007 (2020). https://doi.org/10.1088/2515-7655/ab7bf4

    Article  Google Scholar 

  13. Smetankina, N., Merkulova, A., Merkulov, D., Postnyi, O.: Dynamic response of laminate composite shells with complex shape under low-velocity impact. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds.) ICTM 2020. LNNS, vol. 188, pp. 267–276. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-66717-7_22

    Chapter  Google Scholar 

  14. Strelnikova, E., Kriutchenko, D., Gnitko, V., Degtyarev, K.: Boundary element method in nonlinear sloshing analysis for shells of revolution under longitudinal excitations. Eng. Anal. Boundary Elem. 111, 78–87 (2020). https://doi.org/10.1016/j.enganabound.2019.10.008

    Article  MathSciNet  MATH  Google Scholar 

  15. Strelnikova, E., Choudhary, N., Kriutchenko, D., Gnitko, V., Tonkonozhenko, A.: Liquid vibrations in circular cylindrical tanks with and without baffles under horizontal and vertical excitations. Eng. Anal. Boundary Elem. 120, 13–27 (2020). https://doi.org/10.1016/j.enganabound.2020.07.02m

    Article  MathSciNet  MATH  Google Scholar 

  16. Wu, W., Sun, Q., Luo, S., Sun, M., Chen, Z., Sun, H.: Accurate calculation of aerodynamic coefficients of parafoil airdrop system based on computational fluid dynamic. Int. J. Adv. Robot. Syst. 15(2), 172988141876619 (2018). https://doi.org/10.1177/1729881418766190

    Article  Google Scholar 

  17. Könözsy, L.: The k-ω shear-stress transport (SST) turbulence model. In: Könözsy, L. (ed.) A New Hypothesis on the Anisotropic Reynolds Stress Tensor for Turbulent Flows. Fluid Mechanics and Its Applications, pp. 57–66. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13543-0_3

    Chapter  MATH  Google Scholar 

  18. Sierikova, O., Strelnikova, E., Gnitko, V., Degtyarev, K.: Boundary calculation models for elastic properties clarification of three-dimensional nanocomposites based on the combination of finite and boundary element methods. In: 2021 IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek), pp. 351–356 (2021). https://doi.org/10.1109/KhPIWeek53812.2021.9570086

  19. Sierikova, O., Koloskov, V., Degtyarev, K., Strelnikova, O.: The deformable and strength characteristics of nanocomposites improving. Mater. Sci. Forum 1038, 144–153 (2021). https://doi.org/10.4028/www.scientific.net/MSF.1038.144

    Article  Google Scholar 

  20. Mastrodicasa, D., Lorenzo, E.D., Manzato, S., Peeters, B., Guillaume, P.: Full-field modal analysis by using digital image correlation technique. In: Di Maio, D., Baqersad, J. (eds.) Rotating Machinery, Optical Methods & Scanning LDV Methods. CPSEMS, vol. 6, pp. 105–112. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-76335-0_10

    Chapter  Google Scholar 

  21. Di Lorenzo, E., et al.: Modal analysis of wind turbine blades with different test setup configurations. In: Mains, M.L., Dilworth, B.J. (eds.) Topics in Modal Analysis & Testing. CPSEMS, vol. 8, pp. 143–152. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-12684-1_14

    Chapter  Google Scholar 

  22. Grapow, F., et al.: Small wind, big potential: HAWT design case study. In: MATEC Web of Conferences, vol. 234, p. 0100 (2018). https://doi.org/10.1051/matecconf/201823401005

  23. Ravi Kumar, B.: Enhancing aerodynamic performance of NACA 4412 aircraft wing using leading edge modification. Wind Struct. 29(4), 271–277 (2019). https://doi.org/10.12989/was.2019.29.4.271

    Article  Google Scholar 

  24. Sidik, N.A.C., Yusuf, S.N.A., Asako, Y., Mohamed, S.B., Japa, W.M.A.A.: A short review on RANS turbulence models. CFD Lett. 12(11), 83–96 (2020). https://doi.org/10.37934/cfdl.12.11.8396

    Article  Google Scholar 

  25. Krishna, J., Bhargava, V., Donepudi, J.: BEM prediction of wind turbine operation and performance. Int. J. Renew. Energy Res. 8(4), 19–62 (2018)

    Google Scholar 

  26. Deyneko, N., Semkiv, O., Khmyrov, I., Khryapynskyy, A.: Investigation of the combination of ITO/CdS/CdTe/Cu/Au solar cells in microassembly for electrical supply of field cables. Eastern-Eur. J. Enterp. Technol. 1(12–91), 18–23 (2018)

    Article  Google Scholar 

  27. Popov, O., Taraduda, D., Sobyna, V., Sokolov, D., Dement, M., Pomaza-Ponomarenko, A.: Emergencies at potentially dangerous objects causing atmosphere pollution: peculiarities of chemically hazardous substances migration. In: Babak, V., Isaienko, V., Zaporozhets, A. (eds.) Systems, Decision and Control in Energy I. SSDC, vol. 298, pp. 151–163. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48583-2_10

    Chapter  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge professors Alexander Cheng and Stavros Syngellakis, Wessex Institute of Technology, for their constant support and interest to our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olena Sierikova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sierikova, O., Strelnikova, E., Degtyariov, K. (2023). Numerical Simulation of Strength and Aerodynamic Characteristics of Small Wind Turbine Blades. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds) Integrated Computer Technologies in Mechanical Engineering - 2022. ICTM 2022. Lecture Notes in Networks and Systems, vol 657. Springer, Cham. https://doi.org/10.1007/978-3-031-36201-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36201-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36200-2

  • Online ISBN: 978-3-031-36201-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics