Skip to main content

A System of Stress Determination Based on Biomedical Indicators

  • Conference paper
  • First Online:
Advances in Computer Science for Engineering and Education VI (ICCSEEA 2023)

Abstract

This paper investigated methods of determining stress in humans and developed of smart service system in medicine to automate this process. This paper evaluates existing research in this area. We conducted a study of the method of determining stress levels based on biomedical indicators. Also, we have developed a system that is relevant for use in many different areas. For example, such a system is convenient to use in office firms to prevent overexertion of workers, to prevent emergencies in jobs with a high level of human impact, where human life is endangered, and also for daily use in health care. The smart service system works with input data based on heart rate variability indices. Neural network training has been launched in 100 epochs. In each epoch, the results of accuracy and loss were recorded. Also, for better reliability of the results, we recorded the data obtained not only from training data but also from variation data. As a result, the classification problem is solved. We get 99% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maksimenko, V.A., et al.: Human personality reflects spatio-temporal and time-frequency EEG structure. PLoS ONE 13(9), 1–13 (2018)

    Article  Google Scholar 

  2. Mochurad, L., Yatskiv, M.: Simulation of a Human Operator’s Response to Stressors under Production Conditions. Proceedings of the 3rd International Conference on Informatics & Data-Driven Medicine, November 19–21, pp. 156–169. Växjö, Sweden (2020)

    Google Scholar 

  3. Deo, R.C.: Machine Learning in Medicine. Circul. Bas. Sci. Clini. 132, 1920–1930 (2015)

    Google Scholar 

  4. Gao, J., Yang, Y., Lin, P., Park, D.S.: Computer vision in healthcare applications. J. Healthc. Eng. 2018, 1–5 (2018)

    Article  Google Scholar 

  5. Izonin, I., Trostianchyn, A., Duriagina, Z., Tkachenko, R., Tepla, T., Lotoshynska, N.: The combined use of the wiener polynomial and SVM for material classification task in medical implants production. Int. J. Intelli. Sys. Appli. (IJISA) 10(9), 40–47 (2018)

    Google Scholar 

  6. Santra, A., Dutta, A.: A comprehensive review of machine learning techniques for predicting the outbreak of Covid-19 cases. Int. J. Intell. Sys. Appli. (IJISA) 14(3), 40–53 (2022)

    Google Scholar 

  7. Gamst-Klaussen, T., Lamu, A.N., Chen, G., Olsen, J.A.: Assessment of outcome measures for cost-utility analysis in depression: mapping depression scales onto the EQ-5D-5L. BJPsych Open 4(4), 160–166 (2018)

    Article  Google Scholar 

  8. Delmastro, F., Martino, F.D., Dolciotti, C.: Cognitive training and stress detection in MCI frail older people through wearable sensors and machine learning. IEEE Access 8, 65573–65590 (2020)

    Article  Google Scholar 

  9. Pavlova, I., Zikrach, D., Mosler, D., Ortenburger, D., Gora, T., Wasik, J.: Determinants of anxiety levels among young males in a threat of experiencing military conflict-applying a machine-learning algorithm in a psychosociological study. PLoS ONE 15(10), 1–14 (2020)

    Article  Google Scholar 

  10. Akanksha, E.: Framework for propagating stress control message using heartbeat based IoT remote monitoring analytics. Int. J. Elec. Comp. Eng. 10(5), 4615–4622 (2020)

    Google Scholar 

  11. Nimmala, S., Ramadevi, Y., Sahith, R., Cheruku, R.: High blood pressure prediction based on AAA++ using machine-learning algorithms. Cogent Engineering. 5(1), 1–12 (2018)

    Article  Google Scholar 

  12. Rankin, D., et al.: Identifying key predictors of cognitive dysfunction in older people using supervised machine learning techniques: Observational study. JMIR Med. Inform. 8(9), 1–23 (2020)

    Article  Google Scholar 

  13. Prout, T.A., et al.: Identifying predictors of psychological distress during COVID-19: a machine learning approach. Front. Psychol. 11, 1–14 (2020)

    Article  Google Scholar 

  14. Njage, P.M.K., Leekitcharoenphon, P., Hald, T.: Improving hazard characterization in microbial risk assessment using next generation sequencing data and machine learning: predicting clinical outcomes in shigatoxigenic escherichia coli. Int J Food Microbiol. 292, 72–82 (2019)

    Article  Google Scholar 

  15. Latha, C.B.C., Jeeva, S.C.: Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques. Info. Medi. Unloc. 16, 1–9 (2019)

    Google Scholar 

  16. Huertas, J.A., et al.: Level of traffic stress-based classification: a clustering approach for Bogotá, Colombia. Transp. Res. Part D: Transp. Environ. 85, 1–17 (2020)

    Article  Google Scholar 

  17. Can, Y.S., Chalabianloo, N., Ekiz, D., Fernandez-Alvarez, J., Riva, G., Ersoy, C.: Personal stress-level clustering and decision-level smoothing to enhance the performance of ambulatory stress detection with smartwatches. IEEE Access. 8, 38146–38163 (2020)

    Article  Google Scholar 

  18. Khan, T.A., Kadir, K.A., Nasim, S., Alam, M., Shahid, Z., Mazliham, M.S.: Proficiency assessment of machine learning classifiers: an implementation for the prognosis of breast tumor and heart disease classification. Int. J. Adv. Comput. Sci. Appl. 11(11), 560–569 (2020)

    Google Scholar 

  19. Mochurad, L., Ya, H.: Modeling of psychomotor reactions of a person based on modification of the tapping test. Int. J. Comp. 20(2), 190–200 (2021)

    Google Scholar 

  20. Du, K.-L., Swamy, M.N.S.: Neural Networks and Statistical Learning, pp. 1–24. Springer-Verlag, London (2014)

    Google Scholar 

  21. Dataset SWELL [Electronic resource] // Access mode: https://www.kaggle.com/qiriro/swell-heart-rate-variability-hrv

  22. Nehrey, M., Hnot, T.: Data science tools application for business processes modelling in aviation. In: Cases on Modern Computer Systems in Aviation. IGI Global, pp. 176–190 (2019). https://www.igi-global.com/gateway/chapter/222188

  23. Kaminskyi, A., Nehrey, M.: Information technology model for customer relationship management of nonbank lenders: coupling profitability and risk. In: 11th International Conference on Advanced Computer Information Technologies (ACIT), pp. 234–237 (2021)

    Google Scholar 

  24. Kalaiselvi, T., Sriramakrishnan, P., Somasundaram, K.: Performance of medical image processing algorithms implemented in CUDA running on GPU based machine. Int. J. Intell. Sys. Appli. (IJISA). 10(1), 58–68 (2018). Jan

    Google Scholar 

  25. Umbarkar, A.J., Rothe, N.M., Sathe, A.S.: OpenMP Teaching-learning based optimization algorithm over multi-core system. Int. J. Intelli. Sys. Appli. (IJISA) 7(7), 57–65 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesia Hentosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hentosh, L., Savchyn, V., Kravchenko, O. (2023). A System of Stress Determination Based on Biomedical Indicators. In: Hu, Z., Dychka, I., He, M. (eds) Advances in Computer Science for Engineering and Education VI. ICCSEEA 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 181. Springer, Cham. https://doi.org/10.1007/978-3-031-36118-0_58

Download citation

Publish with us

Policies and ethics