Skip to main content

Research and Development of Bilinear QoS Routing Model over Disjoint Paths with Bandwidth Guarantees in SDN

  • Conference paper
  • First Online:
Advances in Computer Science for Engineering and Education VI (ICCSEEA 2023)

Abstract

The work proposes developing a bilinear Quality of Service routing model over disjoint paths with bandwidth guarantees in the Software-Defined Network data plane. The advantage of the solution is formulating the routing problem as optimization under bilinear conditions aimed at bandwidth guarantee over the set of disjoint paths (multipath). Solving the routing problem allows obtaining disjoint routes by Boolean variables calculation responsible for the link belonging to the collection of network paths. Also, the model introduces conditions of the disjoint routes connectivity and the intersection absence. The model's novelty is the bilinear conditions for a given Quality of Service level guarantee. Fulfilling such bilinear requirements provides that the total bandwidth of the disjoint routing multipath will not be lower than the demanded level. Also, the optimality criterion is defined by the Quality of Service requirements. A numerical study confirmed the improved model's workability in providing a set level of obtained disjoint paths bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, S., Mir, A.H.: SDN interfaces: protocols, taxonomy and challenges. Int. J. Wirel. Microwave Technol. (IJWMT) 12(2), 11–32 (2022). https://doi.org/10.5815/ijwmt.2022.02.02

    Article  Google Scholar 

  2. Barabash, O., Kravchenko, Y., Mukhin, V., Kornaga, Y., Leshchenko, O.: Optimization of parameters at SDN technologie networks. Int. J. Intell. Syst. Appl. 9(9), 1–9 (2017). https://doi.org/10.5815/ijisa.2017.09.01

    Article  Google Scholar 

  3. Al Mtawa, Y., Haque, A., Lutfiyya, H.: Migrating from legacy to software defined networks: a network reliability perspective. IEEE Trans. Reliab. 70(4), 1525–1541 (2021). https://doi.org/10.1109/TR.2021.3066526

    Article  Google Scholar 

  4. Islam, N., Rahman, H., Nasir, M.K.: A comprehensive analysis of QoS in wired and wireless SDN based on mobile IP. Int. J. Comput. Netw. Inf. Secur. 13(5), 18–28 (2021). https://doi.org/10.5815/ijcnis.2021.05.02

    Article  Google Scholar 

  5. Rohitaksha, K., Rajendra, A.B., Mohan, J.: Routing in hybrid software defined networking using hop-count approach. Int. J. Wirel. Microwave Technol. (IJWMT) 12(3), 54–60 (2022). https://doi.org/10.5815/ijwmt.2022.03.04

    Article  Google Scholar 

  6. Strelkovskaya, I., Solovskaya, I., Makoganiuk, A.: Predicting self-similar traffic using cubic B-splines. In: 2019 3rd International Conference on Advanced Information and Communications Technologies (AICT) Proceedings, pp. 153–156. IEEE (2019). https://doi.org/10.1109/AIACT.2019.8847761

  7. Bielievtsov, S., Ruban, I., Smelyakov, K., Sumtsov, D.: Network technology for transmission of visual information. selected papers of the XVIII international scientific and practical conference “information technologies and security” (ITS 2018). In: CEUR Workshop Proceedings, vol. 2318, pp. 160–175 (2018). https://ceur-ws.org/Vol-2318/paper14.pdf

  8. Smelyakov, K., Smelyakov, S., Chupryna, A.: Adaptive edge detection models and algorithms. In: Mashtalir, V., Ruban, I., Levashenko, V. (eds.) Advances in Spatio-Temporal Segmentation of Visual Data. Studies in Computational Intelligence, vol. 876, pp. 1–51. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-35480-0_1

  9. Lemeshko, O., Hu, Z., Shapovalova, A., Yeremenko, O., Yevdokymenko, M.: Research of the influence of compromise probability in secure based traffic engineering model in SDN. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds.) Advances in Computer Science for Engineering and Education IV. ICCSEEA 2021. Lecture Notes on Data Engineering and Communications Technologies, vol. 83, pp. 47–55. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80472-5_5

  10. Lemeshko, O., Yeremenko, O., Yevdokymenko, M., Sleiman, B.: System of solutions the maximum number of disjoint paths computation under quality of service and security parameters. In: Ilchenko, M., Uryvsky, L., Globa, L. (eds.) Advances in Information and Communication Technology and Systems. MCT 2019. Lecture Notes in Networks and Systems, vol. 152, pp. 191–205. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58359-0_10

  11. Lemeshko, O., Yeremenko, O., Yevdokymenko, M., Shapovalova, A., Hailan, A.M., Mersni, A.: Cyber resilience approach based on traffic engineering fast reroute with policing. In: 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS) Proceedings, vol. 1, pp. 117–122. IEEE (2019). https://doi.org/10.1109/IDAACS.2019.8924294

  12. Lemeshko, O., Yevdokymenko, M., Yeremenko, O., Hailan, A.M., Segeč, P., Papán, J.: Design of the fast reroute QoS protection scheme for bandwidth and probability of packet loss in software-defined WAN. In: 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM), pp. 1–5. IEEE (2019). https://doi.org/10.1109/CADSM.2019.8779321

  13. Gomes, T., Jorge, L., Girão-Silva, R., Yallouz, J., Babarczi, P., Rak, J.: Fundamental schemes to determine disjoint paths for multiple failure scenarios. In: Rak, J., Hutchison, D. (eds.) Guide to Disaster-Resilient Communication Networks. Computer Communications and Networks, pp. 429–453. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44685-7_17

  14. Lopez-Pajares, D., Rojas, E., Carral, J.A., Martinez-Yelmo, I., Alvarez-Horcajo, J.: The disjoint multipath challenge: multiple disjoint paths guaranteeing scalability. IEEE Access 9, 74422–74436 (2021). https://doi.org/10.1109/ACCESS.2021.3080931

    Article  Google Scholar 

  15. Lopez-Pajares, D., Alvarez-Horcajo, J., Rojas, E., Carral, J.A., Martinez-Yelmo, I.: One-shot multiple disjoint path discovery protocol (1S-MDP). IEEE Communications Letters 24(8), 1660–1663 (2020). https://doi.org/10.1109/LCOMM.2020.2990885

    Article  Google Scholar 

  16. Robinson, Y.H., Julie, E.G., Saravanan, K., Kumar, R., Abdel-Basset, M., Thong, P.H.: Link-disjoint multipath routing for network traffic overload handling in mobile ad-hoc networks. IEEE Access 7, 143312–143323 (2019). https://doi.org/10.1109/ACCESS.2019.2943145

    Article  Google Scholar 

  17. Sreeram, K., Unnisa, A. and Poornima, V.: QoS aware multi-constrained node disjoint multipath routing for wireless sensor networks. In: 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS) Proceedings, pp. 382–385. IEEE (2019). https://doi.org/10.1109/ICACCS.2019.8728475

  18. Sarma, H.K.D., Dutta, M.P., Dutta, M.P.: A quality of service aware routing protocol for mesh networks based on congestion prediction. In: 2019 International Conference on Information Technology (ICIT) Proceedings, pp. 430–435. IEEE (2019). https://doi.org/10.1109/ICIT48102.2019.00082

  19. Zhang, C., et al.: Scalable traffic engineering for higher throughput in heavily-loaded software defined networks. In: NOMS 2020–2020 IEEE/IFIP Network Operations and Management Symposium Proceedings, pp. 1–7. IEEE (2020). https://doi.org/10.1109/NOMS47738.2020.9110259

  20. Besta, M., et al.: High-performance routing with multipathing and path diversity in ethernet and hpc networks. IEEE Trans. Parallel Distrib. Syst. 32(4), 943–959 (2020). https://doi.org/10.1109/TPDS.2020.3035761

    Article  Google Scholar 

  21. Hou, A., Wu, C.Q., Zuo, L., Zhang, X., Wang, T., Fang, D.: Bandwidth scheduling for big data transfer with two variable node-disjoint paths. J. Commun. Netw. 22(2), 130–144 (2020). https://doi.org/10.1109/JCN.2020.000004

    Article  Google Scholar 

  22. Zhang, W., Lei, W., Zhang, S.: A multipath transport scheme for real-time multimedia services based on software-defined networking and segment routing. IEEE Access 8, 93962–93977 (2020). https://doi.org/10.1109/ACCESS.2020.2994346

    Article  Google Scholar 

  23. Zeng, G., Zhan, Y., Pan, X.: Failure-tolerant and low-latency telecommand in mega-constellations: the redundant multi-path routing. IEEE Access 9, 34975–34985 (2021). https://doi.org/10.1109/ACCESS.2021.3061736

    Article  Google Scholar 

  24. Kaneko, K., Van Nguyen, S., Binh, H.T.T.: Pairwise disjoint paths routing in Tori. IEEE Access 8, 192206–192217 (2020). https://doi.org/10.1109/ACCESS.2020.3032684

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandra Yeremenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lemeshko, O., Yeremenko, O., Yevdokymenko, M., Sleiman, B. (2023). Research and Development of Bilinear QoS Routing Model over Disjoint Paths with Bandwidth Guarantees in SDN. In: Hu, Z., Dychka, I., He, M. (eds) Advances in Computer Science for Engineering and Education VI. ICCSEEA 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 181. Springer, Cham. https://doi.org/10.1007/978-3-031-36118-0_20

Download citation

Publish with us

Policies and ethics