Skip to main content

Role of Magnetic Nanomaterials in Biosafety and Bioregulation Facets

  • Chapter
  • First Online:
Magnetic Nanomaterials

Abstract

Due to their inherent magnetic properties and multifunctional design, magnetic nanoparticles (MNPs) fall within a category of highly customizable instruments that can be utilized as imaging agents, medicinal medications, biological devices, nano-electronic biosensors, or molecular nanotechnology for the delivery of drugs and genes. Human biosafety (HBS) of MNPs for clinical usage has grown to be a significant concern as the configuration, shape, chemical characteristics, and implant locations, along with their possible uses, become increasingly complex. Health hazards could also arise if MNPs build up in the cells or organs of humans or interact with their particles or chemical constituents. Consequently, this chapter reviews the special physical and chemical features, possible medical applications, as well as HBS in clinical studies of MNPs. Finally, the chapter will attempt to look at the challenges of practical translation and the prospective applications of MNPs in the biomedical fields. In conclusion, this chapter makes some recommendations for further study in nanomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gul, S., Khan, S., Rehman, I., Khan, M., Khan, M.: A comprehensive review of magnetic nanomaterials modern day theranostics. Front. Mater. 6(179) (2019)

    Google Scholar 

  2. Paladhi, A.G., Manohar, M.V., Pal, K., Vallinayagam, S., Packirisamy, A.S.B., Bashreer, V.A., Sai Nandhini, R., Ukhurebor, K.E.: Novel electrochemical biosensor key significance of smart intelligence (IoMT & IoHT) of COVID-19 virus control management. Process Biochem. 122, 105–109 (2022)

    Google Scholar 

  3. Kerry, R., Ukhurebor, K., Kumari, S., Maurya, G., Patra, S., Panigrahi, B., Majhi, S., Rout, J., Rodriguez-Torres, M., Das, G., Shin, H.-S., Patra, J.: A comprehensive review on the applications of nano-biosensor based approaches for non-communicable and communicable disease detection. Biomater. Sci. 9, 3576–3602 (2021)

    Article  Google Scholar 

  4. Onyancha, R., Ukhurebor, K., Aigbe, U., Osibote, O., Kusuma, H., Darmokoesoemo, H.: A methodical review on carbon-based nanomaterials in energy-related applications. Adsorpt. Sci. & Technol. 4438286, 1–21 (2022)

    Article  Google Scholar 

  5. Akanji, S., Ama, O., Arotiba, O., Nkosi, D., Olayiwola, I., Aigbe, U., Onyancha, R., Ukhurebor, K.: Photoelectrochemical application of nanomaterials. In: Ama, O., Ray, S., Osifo, P. (eds.) Modified Nanomaterials for Environmental Applications - Electochemical Synthesis, Characterization, and Properties, pp. 121–153. Springer Nature (2022)

    Google Scholar 

  6. Ukhurebor, K., Aigbe, U., Onyancha, R., Ama, O., Amadasun, C., Emegha, J., Osibote, O., Azi, S., Idris, A., Otun, K.: Biosensing applications of electrode materials. In: Ama, O., Ray, S., Osifo, P. (eds.) Modified Nanomaterials for Environmental Applications - Electrochemical Synthesis, Characterization, and Properties, pp. 187–231. Springer Nature (2022)

    Google Scholar 

  7. Su, H., Wang, Y., Gu, Y., Bowman, L., Zhao, J., Ding, M.: Potential applications and human biosafety of nanomaterials used in nanomedicine. J. Appl. Toxicol. 38(1), 3–24 (2018)

    Article  CAS  Google Scholar 

  8. Ukhurebor, K., Aigbe, U., Onyancha, R., Ama, M., Kusuma, H., Siloko, I., Emegha, J., Azi, S., Esiekpe, E., Inobeme, A., Bobadoye, A.: Developments, utilization and applications of nanobiosensors for environmental sustainability and safety. In: Singh, R., Signh, K. (eds.) Bionanomaterials for Environmental and Agricultural Applications, pp. 1–18. IOP Publishing (2021)

    Google Scholar 

  9. Ukhurebor, K., Adetunji, C., Bobadoye, A., Aigbe, U., Onyancha, R., Siloko, I., Emegha, J., Okocha, G., Abiodun, I.: Bionanomaterials for biosensor technology. In: Singh, R., Singh, K. (eds.) Bionanomaterials: Fundamentals and Biomedical Applications, pp. 1–22. IOP Publishing, (2021)

    Google Scholar 

  10. Mukherjee, S., Liang, L., Veiseh, O.: Recent advancements of magnetic nanomaterials in cancer therapy. Pharmaceutics 12(2), 147 (2020)

    Article  CAS  Google Scholar 

  11. Zhu, K., Ju, Y., Xu, J., Yang, Z., Gao, S., Hou, Y.: Magnetic nanomaterials: Chemical design, synthesis, and potential applications. Acc. Chem. Res. 51(2), 404–413 (2018)

    Article  CAS  Google Scholar 

  12. Onyancha, R., Aigbe, U., Ukhurebor, K., Kusuma, H., Darmokoesoemo, H., Osibote, O., Pal, K.: Influence of magnetism-mediated potentialities of recyclable adsorbents of heavy metal ions from aqueous solutions - an organized review. Results Chem. 4, 100452 (2022)

    Google Scholar 

  13. Onyancha, R., Aigbe, U., Ukhurebor, K., Muchiri, P.: Facile synthesis and applications of carbon nanotubes in heavy-metal remediation and biomedical fields: a comprehensive review. J. Mol. Struct. 1238, 130462 (2021)

    Google Scholar 

  14. Ukhurebor, K., Onyancha, R., Aigbe, U., UK-Eghonghon, G., Kerry, R., Kusuma, H., Darmokoesoemo, H., Osibote, O., Balogun, V.: A methodical review on the applications and potentialities of using nanobiosensors for diseases diagnosis. BioMed Res. Int. 1682502, 1–20 (2022)

    Google Scholar 

  15. Etheridge, M., Campbell, S., Erdman, A., Haynes, C., Wolf, S., McCullough, J.: The big picture on nanomedicine: The state of investigational and approved nanomedicine products. Nanomedicine 9, 1–14 (2013)

    Article  CAS  Google Scholar 

  16. Fuchs, S., Rodel, C., Blinne, A., Zastrau, U., Wunsche, M., Hilbert, V., Glaser, L., Viefhaus, J., Frumker, E., Corkum, P., Forster, E., Paulus, G.: Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation. Sci. Rep. 6, 20658 (2016)

    Google Scholar 

  17. Au, K., Lu, Z., Matcher, S., Armes, S.: Polypyrrole nanoparticles: a potential optical coherence tomography contrast agent for cancer imaging. Adv. Mater. 23, 5792–5795 (2011)

    Article  CAS  Google Scholar 

  18. Gorjikhah, F., Davaran, S., Salehi, R., Bakhtiari, M., Hasanzadeh, A., Panahi, Y., Emamverdy, M., Akbarzadeh, A.: Improving “lab-on-a-chip” techniques using biomedical nanotechnology: A review. Artif. Cells Nanomed. Biotechnol. 44, 1609–1614 (2016)

    Article  CAS  Google Scholar 

  19. Larkin, J., Carson, S., Stoloff, D., Wanunu, M.: Nanopore-based analysis of chemically modified DNA and nucleic acid drug targets. Israel J. Chem. 53, 431–441 (2013)

    Article  CAS  Google Scholar 

  20. Liu, F., Le, W., Mei, T., Wang, T., Chen, L., Lei, Y., Cui, S., Chen, B., Cui, Z., Shao, C.: In vitro and in vivo targeting imaging of pancreatic cancer using a Fe3O4@SiO2 nanoprobe modified with antimesothelin antibody. Int. J. Nanomedicine 11, 2195–2207 (2016)

    CAS  Google Scholar 

  21. Oh, J., Lee, J.: Designed hybridization properties of DNA-gold nanoparticle conjugates for the ultraselective detection of a singlebase mutation in the breast cancer gene BRCA1. Anal. Chem. 83, 7364–7370 (2011)

    Article  CAS  Google Scholar 

  22. Chin, Y., Liao, E., Wu, C., Wang, G., Tsai, J.: Detection of haplotype mutations of the MD-2 gene promoter associated with Der p2-induced allergy using a nanostructured biosensor. Int. J. Nanomedicine 9, 1403–1412 (2014)

    Google Scholar 

  23. Bianchi, D., Hanson, J.: Sharpening the tools: a summary of a National Institutes of Healthworkshop on new technologies for detection of fetal cells in maternal blood for early prenatal diagnosis. J. Matern. Fetal Neonatal Med. 19, 199–207 (2006)

    Article  Google Scholar 

  24. Vanden Bon, N., van Grinsven, B., Murib, M., Yeap, W., Haenen, K., De Ceuninck, W., Wagner, P., Ameloot, M., Vermeeren, V., Michiels, L.: Heat-transfer-based detection of SNPs in the PAH gene of PKU patients. Int. J. Nanomedicine 9, 1629–1640 (2014)

    Google Scholar 

  25. Dassie, E., Arcidiacono, D., Wasiak, I., Damiano, N., Dall’Olmo, L., Giacometti, C., Facchin, S., Cassaro, M., Guido, E., De Lazzari, F., Marin, O., Ciach, T., Fery-Forgues, S., Alberti, A., Battaglia, G., Realdon, S.: Detection of fluorescent organic nanoparticles by confocal laser endomicroscopy in a rat model of Barrett's esophageal adenocarcinoma. Int. J. Nanomedicine 10, 6811–6823 (2015)

    Google Scholar 

  26. Ren, W., Yan, Y., Zeng, L., Shi, Z., Gong, A., Schaaf, P., Wang, D., Zhao, J., Zou, B., Yu, H., Chen, G., Brown, E., Wu, A.: A near infrared light triggered hydrogenated black TiO2 for cancer photothermal therapy. Adv. Healthc. Mater. 4, 1526–1536 (2015)

    Article  CAS  Google Scholar 

  27. Kolitz-Domb, M., Corem-Salkmon, E., Grinberg, I., Margel, S.: Synthesis and characterization of bioactive conjugated near-infrared fluorescent proteinoid-poly(L-lactic acid) hollow nanoparticles for optical detection of colon cancer. Int. J. Nanomedicine 9, 5041–5053 (2014)

    Google Scholar 

  28. Drbohlavova, J., Chomoucka, J., Adam, V., Ryvolova, M., Eckschlager, T., Hubalek, J., Kizek, R.: Nanocarriers for anticancer drugs - new trends in nanomedicine. Curr. Drug Metab. 14, 547–564 (2013)

    Article  CAS  Google Scholar 

  29. Merkle, R.: Nanotechnology and medicine. Adv. Anti-Aging Med. I, 277–286 (1996)

    Google Scholar 

  30. Li, H., Mu, Y., Lu, J., Wei, W., Wan, Y., Liu, S.: Target-cell-specific fluorescence silica nanoprobes for imaging and theranostics of cancer cells. Anal. Chem. 86, 3602–3609 (2014)

    Article  CAS  Google Scholar 

  31. Liu, Z., Chen, N., Dong, C., Li, W., Guo, W., Wang, H., Wang, S., Tan, J., Tu, Y., Chang, J.: Facile construction of near infrared fluorescence nanoprobe with amphiphilic protein-polymer bioconjugate for targeted cell imaging. ACS Appl. Mater. Interfaces 7, 18997–19005

    Google Scholar 

  32. Chen, Q., Liu, X., Chen, J., Zeng, J., Cheng, Z., Liu, Z.: A self-assembled albumin-based nanoprobe for in vivo ratiometric photoacoustic pH imaging. Adv. Mater 27, 6820–6827 (2015)

    Google Scholar 

  33. Chen, Y., Gong, L., Gao, N., Liao, J., Sun, J., Wang, Y., Wang, L., Zhu, P., Fan, Q., Wang, Y., Zeng, W., Mao, H., Yang, L., Gao, F.: Preclinical evaluation of a urokinase plasminogen activator receptortargeted nanoprobe in rhesus monkeys. Int. J. Nanomedicine 10, 6689–6698 (2015)

    Article  CAS  Google Scholar 

  34. Toumey, C.: Nanobots today. Nat. Nanotechnol. 8, 475–476 (2013)

    Google Scholar 

  35. Jacob, T., Hemavathy, K., Jacob, J., Hingorani, A., Marks, N., Ascher, E.: A nanotechnology-based delivery system: Nanobots. Novel vehicles for molecular medicine. J. Cardiovasc. Surg. 52, 159–167 (2011)

    CAS  Google Scholar 

  36. Kaewkamnerdpong, B., Boonrong, P., Trihirun, S., Achalakul, T.: Modeling Nanorobot Control Using Swarm Intelligence for Blood Vessel Repair: A Rigid-Tube Model. Springer International Publishing (2015)

    Google Scholar 

  37. Haun, J., Castro, C., Wang, R., Peterson, V., Marinelli, B., Lee, H., Weissleder, R.: Micro-NMR for rapid molecular analysis of human tumor samples. Sci. Transl. Med. 3, 1968–1973

    Google Scholar 

  38. W. Lee, Y. Kim, B. Chung, U. Demirci and A. Khademhosseini, “Nano/Microfluidics for diagnosis of infectious diseases in developing countries,” Adv. Drug Deliv. Rev., vol. 62, p. 449–457.

    Google Scholar 

  39. Li, M., Li, R., Li, C., Wu, N.: Electrochemical and optical biosensors based on nanomaterials and nanostructures: a review. Front. Biosci. (Schol. Ed.) 3, 1308–1331 (2011)

    Google Scholar 

  40. Feng, X., Yong, Z.: Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 24, 5117–5122

    Google Scholar 

  41. Zhou, W., Ma, Y., Yang, H., Ding, Y., Luo, X.: A label-free biosensor based on silver nanoparticles array for clinical detection of serum p53 in head and neck squamous cell carcinoma. Int. J. Nanomedicine 6, 381–386

    Google Scholar 

  42. Boos, A., Weigand, A., Brodbeck, R., Beier, J., Arkudas, A., Horch, R.: The potential role of telocytes in tissue engineering and regenerative medicine. Semin. Cell Dev. Biol. 55(70) (2016)

    Google Scholar 

  43. Harms, C., Helms, K., Taschner, T., Stratos, I., Ignatius, A., Gerber, T., Lenz, S., Rammelt, S., Vollmar, B., Mittlmeier, T.: Osteogenic capacity of nanocrystalline bone cement in a weight-bearing defect at the ovine tibial metaphysis. Int. J. Nanomedicine 7, 2883–2889 (2012)

    Article  CAS  Google Scholar 

  44. Dau, M., Kammerer, P., Henkel, K., Gerber, T., Frerich, B., Gundlach, K.: Bone formation in mono cortical mandibular critical size defects after augmentation with two synthetic nanostructured and one xenogenous hydroxyapatite bone substitute - in vivo animal study. Clin. Oral Implants Res. 27, 597–603 (2016)

    Article  Google Scholar 

  45. Ghanaati, S., Barbeck, M., Willershausen, I., Thimm, B., Stuebinger, S., Korzinskas, T., Obreja, K., Landes, C., Kirkpatrick, C., Sader, R.: Nanocrystalline hydroxyapatite bone substitute leads to sufficient bone tissue formation already after 3 months: histological and histomorphometrical analysis 3 and 6 months following human sinus cavity augmentation. Clin. Implant. Dent. Res. 15, 883–892 (2013)

    Article  Google Scholar 

  46. Kim, E., Ahn, E., Dvir, T., Kim, D.: Emerging nanotechnology approaches in tissue engineering and regenerative medicine. Int. J. Nanomedicine 9(Suppl. 1), 1–5 (2014)

    Article  Google Scholar 

  47. Gandhimathi, C., Venugopal, J., Bhaarathy, V., Ramakrishna, S., Kumar, S.: Biocomposite nanofibrous strategies for the controlled release of biomolecules for skin tissue regeneration. Int. J. Nanomedicine 9, 4709–4722

    Google Scholar 

  48. Wen, X., Zheng, Y., Wu, J., Wang, L., Yuan, Z., Peng, J., Meng, H.: Immobilization of collagen peptide on dialdehyde bacterial cellulose nanofibers via covalent bonds for tissue engineering and regeneration. Int. J. Nanomedicine 10, 4623–4637 (2015)

    CAS  Google Scholar 

  49. Dyondi, D., Webster, T., Banerjee, R.: A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration. Int. J. Nanomedicine 8, 47–59

    Google Scholar 

  50. Yao, C., Hedrick, M., Pareek, G., Renzulli, J., Haleblian, G., Webster, T.: Nanostructured polyurethanepoly-lactic-co-glycolic acid scaffolds increase bladder tissue regeneration: an in vivo study. Int. J. Nanomedicine 8, 3285–3296 (2013)

    Google Scholar 

  51. Zhang, K., Jinglei, W., Huang, C., Mo, X.: Fabrication of silkfibroin/P(LLA-CL) Aligned nanofibrous scaffolds for nerve tissue engineering. Macromolecular Mater. Eng. 298, 565–574

    Google Scholar 

  52. Ge, L., Li, Q., Wang, M., Ouyang, J., Li, X., Xing, M.: Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int. J. Nanomedicine 9, 2399–2407 (2014)

    Google Scholar 

  53. Murugan, K., Senthilkumar, B., Senbagam, D., Al-Sohaibani, S.: Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity. Int. J. Nanomedicine 9, 2431–2438 (2014)

    Google Scholar 

  54. Mehmood, S., Rehman, M., Ismail, H., Mirza, B., Bhatti, A.: Significance of postgrowth processing of ZnO nanostructures on antibacterial activity against gram-positive and gram-negative bacteria. Int. J. Nanomedicine 10, 4521–4533 (2015)

    CAS  Google Scholar 

  55. Mocan, L., Ilie, I., Matea, C., Tabaran, F., Kalman, E., Lancu, C., Mocan, T.: Surface plasmon resonanceinduced photoactivation of gold nanoparticles as bactericidal agents against methicillin-resistant Staphylococcus aureus. Int. J. Nanomedicine 9, 1453–1461 (2014)

    Google Scholar 

  56. Liu, W., Su, P., Gonzales, A., Chen, S., Wang, N., Wang, J., Li, H., Zhang, Z., Webster, T.: Optimizing stem cell functions and antibacterial properties of TiO2 nanotubes incorporated with ZnO nanoparticles: experiments and modeling. Int. J. Nanomedicine 10, 1997–2019 (2015)

    Article  CAS  Google Scholar 

  57. Babu, K., Anandkumar, M., Tsai, T., Kao, T., Inbaraj, B., Chen, B.: Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles. Int. J. Nanomedicine 9, 5515–5531 (2014)

    CAS  Google Scholar 

  58. Xiang, D., Zheng, Y., Duan, W., Li, X., Yin, J., Shigdar, S., O’Connor, M., Marappan, M., Zhao, X., Miao, Y., Xiang, B., Zheng, C.: Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. Int. J. Nanomedicine 8, 4103–4113 (2013)

    Article  Google Scholar 

  59. Spadavecchia, J., Movia, D., Moore, C., Maguire, C., Moustaoui, H., Casale, S., Volkov, Y., Prina-Mello, A.: Targeted polyethylene glycol gold nanoparticles for the treatment of pancreatic cancer: from synthesis to proof-of-concept in vitro studies. Int. J. Nanomedicine 791–822, 11 (2016)

    Google Scholar 

  60. Guo, L., Zhang, H., Wang, F., Liu, P., Wang, Y., Xia, G., Liu, R., Li, X., Yin, H., Jiang, H., Chen, B.: Targeted multidrug-resistance reversal in tumor based on PEG-PLL-PLGA polymer nano drug delivery system. Int. J. Nanomedicine 10, 4535–4547

    Google Scholar 

  61. England, C., Priest, T., Zhang, G., Sun, X., Patel, D., McNally, L., van Berkel, V., Gobin, A., Frieboes, H.: Enhanced penetration into 3D cell culture using two and three-layered gold nanoparticles. Int. J. Nanomedicine 8, 3603–3617 (2013)

    Google Scholar 

  62. Curnis, F., Gasparri, A., Sacchi, A., Fiocchi, M., Corti, A.: Anti-tumor activity of TNF-gold nanodrugs tagged with tumor vasculature-homing peptides containing the NGR or isoDGR motives. Cancer Res. 75, 4387–4387 (2015)

    Google Scholar 

  63. Fan, R., Liang, Q., Wang, J., Tang, T., Xiong X.G.: Enhancement in the percutaneous permeation effects of diclofenac sodium by nanoliposome carrier: a comparative randomized study with common external preparation. J. Clin. Rehabil. Tissue Eng. Res. 11, 3597–3600 (2007)

    Google Scholar 

  64. Hariri, W., Sudha, T., Bharali, D., Cui, H., Mousa, S.: Nano-targeted delivery of toremifene, an estrogen receptor-alpha blocker in prostate cancer. Pharm. Res. 32, 2764–2774 (2015)

    CAS  Google Scholar 

  65. Huang, Y., Zhao, Y., Liu, F., Liu, S.: Nano traditional Chinese medicine: current progresses and future challenges. Curr. Drug Targets 16, 1548–1562 (2015)

    Article  CAS  Google Scholar 

  66. Silva, C., Rijo, P., Molpeceres, J., Figueiredo, I., Ascensao, L., Fernandes, A., Roberto, A., Reis, C.: Polymeric nanoparticles modified with fatty acids encapsulating betamethasone for antiinflammatory treatment. Int. J. Pharm. 493, 271–284 (2015)

    Article  CAS  Google Scholar 

  67. Wu, Z., Zhan, S., Fan, W., Ding, X., Wu, X., Zhang, W., Fu, Y., Huang, Y., Huang, X., Chen, R.: Peptidemediated tumor targeting by a degradable nano gene delivery vector based on pluronic-modified polyethylenimine. Nanoscale Res. Lett. 11(112) (2016)

    Google Scholar 

  68. Mokhtarzadeh, A., Alibakhshi, A., Yaghoobi, H., Hashemi, M., Hejazi, M., Ramezani, M.: Recent advances on biocompatible and biodegradable nanoparticles as gene carriers. Expert. Opin. Biol. Ther. 16, 771–785 (2016)

    Google Scholar 

  69. Wang, Y., Rajala, A., Rajala, R.: Lipid nanoparticles for ocular gene delivery. J. Funct. Biomater. 6, 379–394 (2015)

    Article  CAS  Google Scholar 

  70. Rajala, A., Wang, Y., Zhu, Y., Ranjo-Bishop, M., Ma, J., Mao, C., Rajala, R.: Nanoparticle-assisted targeted delivery of eye-specific genes to eyes significantiy improves the vision of blind mice in vivo. Nano Lett. 14, 5257–5263 (2014)

    Article  CAS  Google Scholar 

  71. Takahashi, Y., Chen, Q., Rajala, R., Ma, J.: MicroRNA-184 modulates canonical Wnt signaling through the regulation of frizzled-7 expression in the retina with ischemia-induced neovascularization. FEBS Lett. 589, 1143–1149 (2015)

    Article  CAS  Google Scholar 

  72. Polyak, D., Krivitsky, A., Scomparin, A., Eliyahu, S., Kalinski, H., Avkin-Nachum, S., Satchi-Fainaro, R.: Systemic delivery of siRNA by aminated poly(alpha)glutamate for the treatment of solid tumors. J. Control Release pii S0168-3659 30411–30414

    Google Scholar 

  73. Mastorakos, P., da Silva, A., Chisholm, J., Song, E., Choi, W., Boyle, M., Morales, M., Hanes, J., Suk, J.: Highly compacted biodegradable DNA nanoparticles capable of overcoming the mucus barrier for inhaled lung gene therapy. Proc. Natl. Acad. Sci. U.S.A. 112, 8720–8725 (2015)

    Article  CAS  Google Scholar 

  74. Ren, Y., Cheung, H., von Maltzhan, G., Agrawal, A., Cowley, G., Weir, B., Boehm, J., Tamayo, P., Karst, A., Liu, J., Hirsch, M., Mesirov, J., Drapkin, R., Root, D., Lo, J., Fogal, V., Ruoslahti, E., Hahn, W., Bhatia, S.: Targeted tumor-penetrating siRNA nanocomplexes for credentialing the ovarian cancer oncogene ID4. Sci. Transl. Med. 4(147ra112) (2012)

    Google Scholar 

  75. Cordeiro, A., Alonso, M., de la Fuente, M.: Nanoengineering of vaccines using natural polysaccharides. Biotechnol. Adv. 33, 1279–1293

    Google Scholar 

  76. Gill, P.: Nanocarriers, nanovaccines, and nanobacteria as nanobiotechnological concerns in modern vaccines. Sci. Iran. 20, 1003–1013 (2013)

    Google Scholar 

  77. Mazaheri, M., Eslahi, N., Ordikhani, F., Tamjid, E., Simchi, A.: Nanomedicine applications in orthopedic medicine: State of the art. Int. J. Nanomedicine 10, 6039–6053 (2015)

    CAS  Google Scholar 

  78. Chavez-Santoscoy, A., Roychoudhury, R., Pohl, N., Wannemuehler, M., Narasimhan, B., Ramer-Tait, A.: Tailoring the immune response by targeting C-type lectin receptors on alveolar macrophages using “pathogen-like” amphiphilic polyanhydride nanoparticles. Biomaterials 33, 4762–4772 (2012)

    Article  CAS  Google Scholar 

  79. Paulis, L., Mandal, S., Kreutz, M., Figdor, C.: Dendritic cell-based nanovaccines for cancer immunotherapy. Curr. Opin. Immunol. 25, 389–395 (2013)

    Article  CAS  Google Scholar 

  80. Vela Ramirez, J., Roychoudhury, R., Habte, H., Cho, M., Pohl, N., Narasimhan, B.: Carbohydrate-functionalized nanovaccines preserve HIV-1 antigen stability and activate antigen presenting cells. J. Biomater. Sci. Polym. Ed. 25, 1387–1406 (2014)

    Google Scholar 

  81. Petukhova, N., Gasanova, T., Stepanova, L., Rusova, O., Potapchuk, M., Korotkov, A., Skurat, E., Tsybalova, L., Kiselev, O., Ivanov, P., Atabekov, J.: Immunogenicity and protective efficacy of candidate universal influenza A nanovaccines produced in plants by Tobacco mosaic virus-based vectors. Curr. Pharm. Des. 19, 5587–5600 (2013)

    Article  CAS  Google Scholar 

  82. Bergs, J., Wacker, M., Hehlgans, S., Piiper, A., Multhoff, G., Rodel, C., Rodel, F.: The role of recent nanotechnology in enhancing the efficacy of radiation therapy. Biochim. Biophys. Acta 1856, 130–143 (2015)

    CAS  Google Scholar 

  83. Kwatra, D., Venugopal, A., Anant, S.: Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl. Cancer Res. 2, 330–342 (2013)

    CAS  Google Scholar 

  84. Zhao, J., Castranova, V.: Toxicology of nanomaterials used in nanomedicine. J. Toxicol. Environ. Health B Crit. Rev. 14, 593–632 (2011)

    Article  CAS  Google Scholar 

  85. Satalkar, P., Elger, B., Hunziker, P., Shaw, D.: Challenges of clinical translation in nanomedicine: a qualitative study. Nanomedicine 12, 893–900 (2016)

    Article  CAS  Google Scholar 

  86. Resnik, D., Tinkle, S.: Ethical issues in clinical trials involving nanomedicine. Contemp. Clin. Trials 28, 433–441 (2007)

    Article  Google Scholar 

  87. Adetunji, C., Ukhurebor, K., Olaniyan, O., Olugbenga, S., Oloke, J., Ubie, B.: Ethical and social aspects of modern biotechnology. In: Biosafety and Bioethics in Biotechnology, pp. 51–67. CRC Press (2022)

    Google Scholar 

  88. Ukhurebor, K., Balogun, V.: Scientific and technological ethics: Principles and boundaries from a bioethics perspective. In: Egielewa, P., Ngonso, B. (eds.) Ethics, Media, Theology and Development in Africa: A Festschrift in Honour of Msgr. Prof. Dr. Obiora Francis Ike, pp 176–188. Geneva, Globethics.net Co-Publications & Others (2022)

    Google Scholar 

  89. Baan, R.: Carcinogenic hazards from inhaled carbon black, titanium dioxide, and talc not containing asbestos or asbestiform fibers: Recent evaluations by an IARC Monographs Working Group. Inhal. Toxicol. 19(Suppl. 1), 213–228 (2007)

    Article  CAS  Google Scholar 

  90. Sakamoto, Y., Nakae, D., Fukumori, N., Tayama, K., Maekawa, A., Imai, K., Hirose, A., Nishimura, T., Ohashi, N., Ogata, A.: Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. J. Toxicol. Sci. 34, 65–76 (2009)

    Article  CAS  Google Scholar 

  91. Tsuda, H., Xu, J., Sakai, Y., Futakuchi, M., Fukamachi, K.: Toxicology of engineered nanomaterials - a review of carcinogenic potential. Asian Pac. J. Cancer Prev. 10, 975–980 (2009)

    Google Scholar 

  92. Sargent, L., Porter, D., Staska, L., Hubbs, A., Lowry, D., Battelli, L., Siegrist, K., Kashon, M., Mercer, R., Bauer, A., Chen, B., Salisbury, J., Frazer, D., McKinney, W., Andrew, M., Tsuruoka, S., Endo, M., Fluharty, K., Castranova, V., Reynolds, S.: Promotion of lung adenocarcinoma following inhalation explosure to multi-walled carbon nanotubes. Part. Fibre Toxicol. 11(3) (2014)

    Google Scholar 

  93. Schütz, C., Juillerat-Jeanneret, L., Mueller, H., Lynch, I., Riediker, M.: Therapeutic nanoparticles in clinics and under clinical evaluation. Nanomedicine (London) 8, 449–467 (2013)

    Article  Google Scholar 

  94. Arrowsmith, J.: Trial watch: phase III and submission failures: 2007–2010. Nat. Rev. Drug Discov. 10, 87

    Google Scholar 

  95. Al-Hajeili, M., Azmi, A., Choi, M.: Nab-paclitaxel: potential for the treatment of advanced pancreatic cancer. Onco. Targets Ther. 7, 187–192 (2014)

    Google Scholar 

  96. Martin, M.: nab-Paclitaxel dose and schedule in breast cancer. Breast Cancer Res. 17, 81

    Google Scholar 

  97. Yamamoto, Y., Kawano, I., Iwase, H.: Nab-paclitaxel for the treatment of breast cancer: efficacy, safety, and approval. Onco Targets Ther. 4, 123–136 (2011)

    Article  CAS  Google Scholar 

  98. Gales, B., Erstad, B.: Adverse reactions to human serum albumin. Ann. Pharmacother. 27, 87–94 (1993)

    Article  CAS  Google Scholar 

  99. Maier-Hauff, K., Ulrich, F., Nestler, D., Niehoff, H., Wust, P., Thiesen, B., Orawa, H., Budach, V., Jordan, A.: Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neuro-Oncol. 103, 317–324 (2011)

    Google Scholar 

  100. Zhao, J., Ding, M.: Potential applications and human biosafety of nanomaterials used in nanomedicine. J. Appl. Toxicol. 38(1), 3–24 (2018)

    Article  Google Scholar 

  101. Yang, S., Liu, Y., Wang, Y., Cao, A.: Biosafety and bioapplication of nanomaterials by designing protein–nanoparticle interactions. Small 9(9–10), 1635–1653 (2013)

    Article  CAS  Google Scholar 

  102. Murashov, V., Howard, J.: Biosafety, occupational health and nanotechnology. Appl. Biosaf. 12(3), 158–167

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heri Septya Kusuma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kusuma, H.S., Ukhurebor, K.E., Aigbe, U.O., Onyancha, R.B., Onyeachu, I.B., Darmokoesoemo, H. (2023). Role of Magnetic Nanomaterials in Biosafety and Bioregulation Facets. In: Aigbe, U.O., Ukhurebor, K.E., Onyancha, R.B. (eds) Magnetic Nanomaterials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-36088-6_11

Download citation

Publish with us

Policies and ethics