Skip to main content

Quantum Factory Method: A Software Engineering Approach to Deal with Incompatibilities in Quantum Libraries

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

The current context of Quantum Computing and its available technologies present an extensive variety of tools and lack of methodologies, leading to incompatibilities across platforms, which end up as inconsistencies in the developed solutions. We propose a design called Quantum Factory Method, based on software engineering and design patterns, to solve these issues by integrating different quantum platforms in the same development. We provide example implementations whose results prove the suitability of the design in different cases, and conclude on how this approach can be expanded for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amazon Web Services: Amazon Braket. https://aws.amazon.com/braket/. Accessed 23 Nov 2022

  2. Atos: myQLM. https://myqlm.github.io/. Accessed 23 Nov 2022

  3. Bergholm, V., et al.: PennyLane: automatic differentiation of hybrid quantum-classical computations (2018). https://doi.org/10.48550/arxiv.1811.04968. Accessed 23 Nov 2022

  4. Biondi, M., et al.: Quantum Computing: An Emerging Ecosystem and Industry Use Cases. McKinsey & Company (2021)

    Google Scholar 

  5. Cirq Developers: Cirq, April 2022. https://doi.org/10.5281/zenodo.6599601

  6. Cross, A., Javadi-Abhari, A., Alexander, T., Beaudrap, N.D.: OpenQASM 3: a broader and deeper quantum assembly language. ACM Trans. Quant. Comput. 3(3), 1–50 (2022). https://doi.org/10.1145/3505636

  7. Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.: Open quantum assembly language (2017). https://doi.org/10.48550/arxiv.1707.03429

  8. Feynman, R.P.: Quantum mechanical computers. Found. Phys. 16(6), 507–531 (1986). https://doi.org/10.1007/bf01886518

    Article  MathSciNet  Google Scholar 

  9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Professional (1994)

    Google Scholar 

  10. Gemeinhardt, F., Garmendia, A., Wimmer, M.: Towards model-driven quantum software engineering. In: 2021 IEEE/ACM 2nd International Workshop on Quantum Software Engineering (Q-SE), pp. 13–15. IEEE (2021). https://doi.org/10.1109/Q-SE52541.2021.00010

  11. Grosan, C., Abraham, A.: Intelligent Systems: A Modern Approach. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21004-4

  12. IBM: IBM Quantum. https://quantum-computing.ibm.com/. Accessed 26 Oct 2022

  13. Magaz: samu-magaz/quantum-factory-method: Quantum Factory Method v1.0.0, January 2023. https://doi.org/10.5281/zenodo.7544539

  14. Moret-Bonillo, V., Magaz-Romero, S., Mosqueira-Rey, E.: Quantum computing for dealing with inaccurate knowledge related to the certainty factors model. Mathematics 10(2) (2022). https://doi.org/10.3390/math10020189

  15. Piattini, M., Serrano, M., Perez-Castillo, R., Petersen, G., Hevia, J.L.: Toward a quantum software engineering. IT Prof. 23(1), 62–66 (2021). https://doi.org/10.1109/MITP.2020.3019522

    Article  Google Scholar 

  16. Shvets, A.: Dive into Design Patterns. Refactoring, Guru (2021)

    Google Scholar 

  17. Zhao, J.: Quantum software engineering: landscapes and horizons. arXiv preprint arXiv:2007.07047 (2020). https://doi.org/10.48550/arxiv.2007.07047

Download references

Acknowledgements

This work has been supported by the European Union’s Horizon 2020 under project NEASQC (grant agreement No 951821) and by the Xunta de Galicia (grant ED431C 2022/44) with the European Union ERDF funds and Centro de Investigación de Galicia “CITIC”, funded by Xunta de Galicia and the European Union (European Regional Development Fund-Galicia 2014–2020 Program, grant ED431G 2019/01). DAE received funding from the project ED431H 2020/10 of Xunta de Galicia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Magaz-Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Magaz-Romero, S., Mosqueira-Rey, E., Alvarez-Estevez, D., Moret-Bonillo, V. (2023). Quantum Factory Method: A Software Engineering Approach to Deal with Incompatibilities in Quantum Libraries. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 10477. Springer, Cham. https://doi.org/10.1007/978-3-031-36030-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36030-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36029-9

  • Online ISBN: 978-3-031-36030-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics