Skip to main content

Classification of Hybrid Quantum-Classical Computing

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

As quantum computers mature, the applicability in practice becomes more important. Quantum computers will often be used in a hybrid setting, where classical computers still play an important role in operating and using the quantum computer. However the term hybrid is diffuse and multi-interpretable. In this work we define two classes of hybrid quantum-classical computing: vertical and horizontal hybrid quantum-classical computing. The first is application-agnostic and concerns using and operating quantum computers. The second is application-specific and concerns running an algorithm. For both, we give a further subdivision in different types of hybrid quantum-classical computing and we introduce terms for them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Google scholar already gives 2090 results for the search on ‘hybrid quantum-classical computing’ for the period January–October 2022.

References

  1. Arthur, D., et al.: A hybrid quantum-classical neural network architecture for binary classification. arXiv:2201.01820 (2022)

  2. Arute, F., Arya, K., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)

    Article  Google Scholar 

  3. Booth, M., Reinhardt, S.P., Roy, A.: Partitioning optimization problems for hybrid classical. quantum execution. Technical report, pp. 01–09 (2017)

    Google Scholar 

  4. Bravyi, S., Kliesch, A., Koenig, R., Tang, E.: Hybrid quantum-classical algorithms for approximate graph coloring. Quantum 6, 678 (2022)

    Article  Google Scholar 

  5. Bravyi, S., Smith, G., Smolin, J.A.: Trading classical and quantum computational resources. Phys. Rev. X 6(2), 021043 (2016)

    Google Scholar 

  6. Van den Brink, R., Phillipson, F., Neumann, N.M.: Vision on next level quantum software tooling. In: Computation Tools (2019)

    Google Scholar 

  7. Calude, C.S., Calude, E., Dinneen, M.J.: Guest column: adiabatic quantum computing challenges. ACM SIGACT News 46(1), 40–61 (2015)

    Article  MathSciNet  Google Scholar 

  8. Calude, C.S., et al.: Quassical computing. Int. J. Unconv. Comput. 14(1), 43–57 (2018)

    Google Scholar 

  9. Cerezo, M., Arrasmith, A., et al.: Variational quantum algorithms. Nat. Rev. Phys. 3(9), 625–644 (2021)

    Article  Google Scholar 

  10. Chiscop, I., Nauta, J., Veerman, B., Phillipson, F.: A hybrid solution method for the multi-service location set covering problem. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12142, pp. 531–545. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50433-5_41

    Chapter  Google Scholar 

  11. Córcoles, A.D., Kandala, A., et al.: Challenges and opportunities of near-term quantum computing systems. arXiv:1910.02894 (2019)

  12. Crielaard, D., De Jong, D., et al.: Quantify-scheduler: an open-source hybrid compiler for operating quantum computers in the NISQ era. Bull. Am. Phys. Soc. 4, 1–29 (2022)

    Google Scholar 

  13. Dahlberg, A., van der Vecht, B., et al.: NetQASM-a low-level instruction set architecture for hybrid quantum-classical programs in a quantum internet. Quantum Sci. Technol. 7, 035023 (2022)

    Article  Google Scholar 

  14. De Luca, G.: A survey of NISQ era hybrid quantum-classical machine learning research. J. Artif. Intell. Technol. 2(1), 9–15 (2022)

    Google Scholar 

  15. Doan, A.D., Sasdelli, M., et al.: A hybrid quantum-classical algorithm for robust fitting. In: Computer Vision and Pattern Recognition, pp. 417–427 (2022)

    Google Scholar 

  16. Edwards, M.: Towards Practical Hybrid Quantum/Classical Computing. Master’s thesis, University of Waterloo (2020)

    Google Scholar 

  17. Ellis, C.A.: Workflow technology. In: Computer Supported Cooperative Work. Trends in Software Series, vol. 7, pp. 29–54 (1999)

    Google Scholar 

  18. Endo, S.: Hybrid quantum-classical algorithms and error mitigation. Ph.D. thesis, University of Oxford (2019)

    Google Scholar 

  19. Endo, S., Cai, Z., et al.: Hybrid quantum-classical algorithms and quantum error mitigation. J. Phys. Soc. Jpn. 90(3), 032001 (2021)

    Article  Google Scholar 

  20. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv:1411.4028 (2014)

  21. Ge, X., Wu, R.B., Rabitz, H.: The optimization landscape of hybrid quantum-classical algorithms: from quantum control to NISQ applications. arXiv:2201.07448 (2022)

  22. Henelius, P., Fishman, R.S.: Hybrid quantum-classical Monte Carlo study of a molecule-based magnet. Phys. Rev. B 78(21), 214405 (2008)

    Article  Google Scholar 

  23. Hevia, J.L., Peterssen, G., Piattini, M.: QuantumPath: a quantum software development platform. Softw. Pract. Exp. 52(6), 1517–1530 (2022)

    Article  Google Scholar 

  24. Hirayama, Y.: Diversity of hybrid quantum systems. In: Hirayama, Y., Hirakawa, K., Yamaguchi, H. (eds.) Quantum Hybrid Electronics and Materials. Quantum Science and Technology, pp. 1–14. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-1201-6_1

  25. Horsman, C., Munro, W.J.: Hybrid hypercomputing: towards a unification of quantum and classical computation. arXiv:0908.2181 (2009)

  26. IBM: IBM’s roadmap for scaling quantum technology (2020). https://research.ibm.com/blog/ibm-quantum-roadmap

  27. Jozsa, R.: An introduction to measurement based quantum computation. arXiv:quant-ph/0508124 (2005)

  28. Khalate, P., Wu, X.C., et al.: An LLVM-based C++ compiler toolchain for variational hybrid quantum-classical algorithms and quantum accelerators. arXiv:2202.11142 (2022)

  29. Khammassi, N., Ashraf, I., et al.: OpenQL: a portable quantum programming framework for quantum accelerators. ACM J. Emerg. Technol. Comput. Syst. (JETC) 18(1), 1–24 (2021)

    Google Scholar 

  30. Kitaev, A.Y.: Quantum computations: algorithms and error correction. Russ. Math. Surv. 52(6), 1191–1249 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lanzagorta, M., Uhlmann, J.K.: Hybrid quantum-classical computing with applications to computer graphics. In: ACM SIGGRAPH 2005 Courses, p. 2-es. ACM (2005)

    Google Scholar 

  32. Lapworth, L.: A hybrid quantum-classical CFD methodology with benchmark HHL solutions. arXiv:2206.00419 (2022)

  33. Li, J., Yang, X., Peng, X., Sun, C.P.: Hybrid quantum-classical approach to quantum optimal control. Phys. Rev. Lett. 118(15), 150503 (2017)

    Article  Google Scholar 

  34. Lloyd, S.: Hybrid Quantum Computing. In: Braunstein, S.L., Pati, A.K. (eds.) Quantum Information with Continuous Variables, pp. 37–45. Springer, Dordrecht (2003). https://doi.org/10.1007/978-94-015-1258-9_5

  35. Mahroo, R., Kargarian, A.: Hybrid quantum-classical unit commitment. In: Texas Power and Energy Conference (TPEC), pp. 1–5. IEEE (2022)

    Google Scholar 

  36. McCaskey, A.J., Lyakh, D.I., Dumitrescu, E.F., Powers, S.S., Humble, T.S.: XACC: a system-level software infrastructure for heterogeneous quantum-classical computing. Quantum Sci. Technol. 5(2), 024002 (2020)

    Article  Google Scholar 

  37. Murray, T.: Three truths and the advent of hybrid quantum computing, June 2019. https://medium.com/d-wave/three-truths-and-the-advent-of-hybrid-quantum-computing-1941ba46ff8c

  38. Ohno, H.: A quantum algorithm of k-means toward practical use. Quantum Inf. Process. 21(4), 1–24 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  39. Peruzzo, A., McClean, J., et al.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1), 1–7 (2014)

    Article  Google Scholar 

  40. Phillipson, F., Chiscop, I.: A quantum approach for tactical capacity management of distributed electricity generation. In: Phillipson, F., Eichler, G., Erfurth, C., Fahrnberger, G. (eds.) Innovations for Community Services, I4CS 2022. Communications in Computer and Information Science, vol. 1585. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06668-9_23

  41. Possignolo, R.T., Margi, C.B.: A quantum-classical hybrid architecture for security algorithms acceleration. In: Trust, Security and Privacy in Computing and Communications, pp. 1032–1037. IEEE (2012)

    Google Scholar 

  42. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  43. Riesebos, L., Fu, X., et al.: Quantum accelerated computer architectures. In: Circuits and Systems (ISCAS), pp. 1–4. IEEE (2019)

    Google Scholar 

  44. Rosmanis, A.: Hybrid quantum-classical search algorithms. arXiv:2202.11443 (2022)

  45. Sagingalieva, A., Kurkin, A., et al.: Hyperparameter optimization of hybrid quantum neural networks for car classification. arXiv:2205.04878 (2022)

  46. Sakurai, R., et al.: Hybrid quantum-classical algorithm for computing imaginary-time correlation functions. Phys. Rev. Res. 4(2), 023219 (2022)

    Article  Google Scholar 

  47. Schalkers, M.A., Möller, M.: Learning based hardware-centric quantum circuit generation. In: Phillipson, F., Eichler, G., Erfurth, C., Fahrnberger, G. (eds.) Innovations for Community Services, I4CS 2022. Communications in Computer and Information Science, vol. 1585. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06668-9_22

  48. Schuetz, M.J., Brubaker, J.K., et al.: Optimization of robot trajectory planning with nature-inspired and hybrid quantum algorithms. arXiv:2206.03651 (2022)

  49. Schuld, M., Fingerhuth, M., Petruccione, F.: Implementing a distance-based classifier with a quantum interference circuit. EPL (Europhys. Lett.) 119(6), 60002 (2017)

    Article  Google Scholar 

  50. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  51. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  52. Stober, S.T., Harwood, S.M., et al.: Considerations for evaluating thermodynamic properties with hybrid quantum-classical computing work flows. Phys. Rev. A 105(1), 012425 (2022)

    Article  MathSciNet  Google Scholar 

  53. Suchara, M., Alexeev, Y., et al.: Hybrid quantum-classical computing architectures. In: Post-Moore Era Supercomputing (2018)

    Google Scholar 

  54. Weder, B., Barzen, J., Leymann, F., Salm, M., Vietz, D.: The quantum software lifecycle. In: Architectures and Paradigms for Engineering Quantum Software, pp. 2–9 (2020)

    Google Scholar 

  55. Weder, B., Barzen, J., Leymann, F., Zimmermann, M.: Hybrid quantum applications need two orchestrations in superposition: a software architecture perspective. In: Web Services, pp. 1–13. IEEE (2021)

    Google Scholar 

  56. Wezeman, R., Neumann, N., Phillipson, F.: Distance-based classifier on the quantum inspire. Digitale Welt 4(1), 85–91 (2020)

    Article  Google Scholar 

  57. Zhang, J.H., Iyengar, S.S.: Graph-\(|{Q}> <{C}|\), a graph-based quantum/classical algorithm for efficient electronic structure on hybrid quantum/classical hardware systems: improved quantum circuit depth performance. J. Chem. Theor. Comput. 18(5), 2885–2899 (2022)

    Google Scholar 

  58. Zylberman, J., Di Molfetta, G., et al.: Hybrid quantum-classical algorithm for hydrodynamics. arXiv:2202.00918 (2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Phillipson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Phillipson, F., Neumann, N., Wezeman, R. (2023). Classification of Hybrid Quantum-Classical Computing. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 10477. Springer, Cham. https://doi.org/10.1007/978-3-031-36030-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36030-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36029-9

  • Online ISBN: 978-3-031-36030-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics